ترغب بنشر مسار تعليمي؟ اضغط هنا

A discrete time crystal is a remarkable non-equilibrium phase of matter characterized by persistent sub-harmonic response to a periodic drive. Motivated by the question of whether such time-crystalline order can persist when the drive becomes aperiod ic, we investigate the dynamics of a Lipkin-Meshkov-Glick model under quasiperiodic kicking. Intriguingly, this infinite-range-interacting spin chain can exhibit long-lived periodic oscillations when the kicking amplitudes are drawn from the Thue-Morse sequence (TMS). We dub this phase a ``self-ordered time crystal (SOTC), and demonstrate that our model hosts at least two qualitatively distinct prethermal SOTC phases. These SOTCs are robust to various perturbations, and they originate from the interplay of long-range interactions and the recursive structure of the TMS. Our results suggest that quasiperiodic driving protocols can provide a promising route for realizing novel non-equilibrium phases of matter in long-range interacting systems.
304 - Sayan Choudhury 2021
Periodically driven (Floquet) systems are described by time dependent Hamiltonians that possess discrete time translation symmetry. The spontaneous breaking of this symmetry leads to the emergence of a novel non-equilibrium phase of matter - the Disc rete Time Crystal (DTC). In this paper, we propose a scheme to extend the lifetime of a DTC in a paradigmatic model - a translation invariant Ising spin chain with nearest-neighbor interaction $J$, subjected to a periodic kick by a transverse magnetic field with frequency $frac{2 pi}{T}$. This system exhibits the hallmark signature of a DTC - persistent subharmonic oscillations with frequency $frac{pi}{T}$ - for a wide parameter regime. Employing both analytical arguments as well as exact diagonalization calculations, we demonstrate that the lifetime of the DTC is maximized, when the interaction strength is tuned to an optimal value, $JT = pi$. Our proposal essentially relies on an interaction induced quantum interference mechanism that suppresses the creation of excitations, and thereby enhances the DTC lifetime. Intriguingly, we find that the period doubling oscillations can last eternally in even size systems. This anomalously long lifetime can be attributed to a time reflection symmetry that emerges at $JT=pi$. Our work provides a promising avenue for realizing a robust DTC in various quantum emulator platforms.
119 - Zehan Li , Sayan Choudhury , 2021
Spin ensembles coupled to optical cavities provide a powerful platform for engineering synthetic quantum matter. Recently, we demonstrated that cavity mediated infinite range interactions can induce fast scrambling in a Heisenberg $XXZ$ spin chain (P hys. Rev. Research {bf 2}, 043399 (2020)). In this work, we analyze the kaleidoscope of quantum phases that emerge in this system from the interplay of these interactions. Employing both analytical spin-wave theory as well as numerical DMRG calculations, we find that there is a large parameter regime where the continuous $U(1)$ symmetry of this model is spontaneously broken and the ground state of the system exhibits $XY$ order. This kind of symmetry breaking and the consequent long range order is forbidden for short range interacting systems by the Mermin-Wagner theorem. Intriguingly, we find that the $XY$ order can be induced by even an infinitesimally weak infinite range interaction. Furthermore, we demonstrate that in the $U(1)$ symmetry broken phase, the half chain entanglement entropy violates the area law logarithmically. Finally, we discuss a proposal to verify our predictions in state-of-the-art quantum emulators.
Motivated by the recent discovery of ergodicity breaking in geometrically frustrated systems, we study the quench dynamics of interacting hardcore bosons on a sawtooth ladder. We identify a set of initial states for which this system exhibits charact eristic signatures of localization like initial state memory retention and slow growth of entanglement entropy for a wide parameter regime. Remarkably, this localization persists even when the many-body spectrum is thermalizing. We argue that the localized dynamics originates from an interaction induced quantum interference. Our results show that the sawtooth ladder can be a fertile platform for realizing non-equilibrium quantum states of matter.
Motivated by the question of whether all fast scramblers are holographically dual to quantum gravity, we study the dynamics of a non-integrable spin chain model composed of two ingredients - a nearest neighbor Ising coupling, and an infinite range $X X$ interaction. Unlike other fast scrambling many-body systems, this model is not known to be dual to a black hole. We quantify the spreading of quantum information using an out-of time-ordered correlator (OTOC), and demonstrate that our model exhibits fast scrambling for a wide parameter regime. Simulation of its quench dynamics finds that the rapid decline of the OTOC is accompanied by a fast growth of the entanglement entropy, as well as a swift change in the magnetization. Finally, potential realizations of our model are proposed in current experimental setups. Our work establishes a promising route to create fast scramblers.
We calculate the collective modes of ultracold trapped alkaline-earth fermionic atoms, which possess an SU($N$) symmetry of the nuclear spin degree of freedom, and a controllable $N$, with $N$ as large as $10$. We calculate the breathing and quadrupo le modes of two-dimensional and three-dimensional harmonically trapped gases in the normal phase. We particularly concentrate on two-dimensional gases, where the shift is more accessible experimentally, and the physics has special features. We present results as a function of temperature, interaction strength, density, and $N$. We include calculations across the collisionless to hydrodynamic crossover. We assume the gas is interacting weakly, such that it can be described by a Boltzmann-Vlasov equation that includes both mean-field terms and the collision integral. We solve this with an approximate scaling ansatz, taking care in two-dimensions to preserve the scaling symmetry of the system. We predict the collective mode frequency shifts and damping, showing that these are measurable in experimentally relevant regimes. We expect these results to furnish powerful tools to characterize interactions and the state of alkaline-earth gases, as well as to lay the foundation for future work, for example on strongly interacting gases and SU($N$) spin modes.
Motivated by recent experiments, we explore the kinetics of Bose-Einstein condensation in the upper band of a double well optical lattice. These experiments engineer a non-equilibrium situation in which the highest energy state in the band is macrosc opically occupied. The system subsequently relaxes and the condensate moves to the lowest energy state. We model this process, finding that the kinetics occurs in three phases: The condensate first evaporates, forming a highly non-equilibrium gas with no phase coherence. Energy is then redistributed among the noncondensed atoms. Finally the atoms recondense. We calculate the time-scales for each of these phases, and explain how this scenario can be verified through future experiments.
167 - Sayan Choudhury , Eun-ah Kim , 2018
Motivated by the question of whether disorder is a prerequisite for localization to occur in quantum many-body systems, we study a frustrated one-dimensional spin chain, which supports localized many-body eigenstates in the absence of disorder. When the system is prepared in an initial state with one domain wall, it exhibits characteristic signatures of quasi-many-body localization (quasi- MBL), including initial state memory retention, an exponentially increasing lifetime with enlarging the size of the system, a logarithmic growth of entanglement entropy, and a logarithmic light cone of an out-of-time-ordered correlator. We further show that the localized many-body eigenstates can be manipulated as pseudospin-1/2s and thus could potentially serve as qubits. Our findings suggest a new route of using frustration to access quasi-MBL and preserve quantum coherence.
We explore the effect of transverse confinement on the stability of a Bose-Einstein condensate (BEC) loaded in a shaken one-dimensional or two-dimensional square lattice. We calculate the decay rate from two-particle collisions. We predict that if th e transverse confinement exceeds a critical value, then, for appropriate shaking frequencies, the condensate is stable against scattering into transverse directions.
Motivated by recent experiments, we analyse the stability of a three-dimensional Bose-Einstein condensate (BEC) loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have a thermodynamic ground state , but may have a long-lived steady state which is an eigenstate of a Floquet Hamiltonian. We explore collisional instabilities of the Floquet ground state which transfer energy into the transverse modes. We calculate decay rates, finding that the lifetime scales as the inverse square of the scattering length and inverse of the peak three- dimensional density. These rates can be controlled by adding additional transverse potentials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا