ﻻ يوجد ملخص باللغة العربية
A discrete time crystal is a remarkable non-equilibrium phase of matter characterized by persistent sub-harmonic response to a periodic drive. Motivated by the question of whether such time-crystalline order can persist when the drive becomes aperiodic, we investigate the dynamics of a Lipkin-Meshkov-Glick model under quasiperiodic kicking. Intriguingly, this infinite-range-interacting spin chain can exhibit long-lived periodic oscillations when the kicking amplitudes are drawn from the Thue-Morse sequence (TMS). We dub this phase a ``self-ordered time crystal (SOTC), and demonstrate that our model hosts at least two qualitatively distinct prethermal SOTC phases. These SOTCs are robust to various perturbations, and they originate from the interplay of long-range interactions and the recursive structure of the TMS. Our results suggest that quasiperiodic driving protocols can provide a promising route for realizing novel non-equilibrium phases of matter in long-range interacting systems.
One of the most important applications of quantum mechanics is the thermodynamic description of quantum gases. Despite the fundamental importance of this topic, a comprehensive description of the thermodynamic properties of non-Hermitian quantum gase
We define topological time crystals, a dynamical phase of periodically driven quantum many-body systems capturing the coexistence of topological order with the spontaneous breaking of discrete time-translation symmetry. We show that many-body localiz
We study the effects of periodic driving on a variant of the Bernevig-Hughes-Zhang (BHZ) model defined on a square lattice. In the absence of driving, the model has both topological and nontopological phases depending on the different parameter value
Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multi-layer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the n
We construct a class of period-$n$-tupling discrete time crystals based on $mathbb{Z}_n$ clock variables, for all the integers $n$. We consider two classes of systems where this phenomenology occurs, disordered models with short-range interactions an