ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range-ordered phase in a quantum Heisenberg chain with interactions beyond nearest neighbors

120   0   0.0 ( 0 )
 نشر من قبل Sayan Choudhury
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin ensembles coupled to optical cavities provide a powerful platform for engineering synthetic quantum matter. Recently, we demonstrated that cavity mediated infinite range interactions can induce fast scrambling in a Heisenberg $XXZ$ spin chain (Phys. Rev. Research {bf 2}, 043399 (2020)). In this work, we analyze the kaleidoscope of quantum phases that emerge in this system from the interplay of these interactions. Employing both analytical spin-wave theory as well as numerical DMRG calculations, we find that there is a large parameter regime where the continuous $U(1)$ symmetry of this model is spontaneously broken and the ground state of the system exhibits $XY$ order. This kind of symmetry breaking and the consequent long range order is forbidden for short range interacting systems by the Mermin-Wagner theorem. Intriguingly, we find that the $XY$ order can be induced by even an infinitesimally weak infinite range interaction. Furthermore, we demonstrate that in the $U(1)$ symmetry broken phase, the half chain entanglement entropy violates the area law logarithmically. Finally, we discuss a proposal to verify our predictions in state-of-the-art quantum emulators.



قيم البحث

اقرأ أيضاً

Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equili brium dynamics of the one-dimensional transverse Ising model with algebraic long-range exchange coupling. Using a state of the art tensor-network approach, complemented by analytic calculations and considering various observables, we show that a weak form of causality emerges, characterized by non-universal dynamical exponents. While the local spin and spin correlation causal edges are sub-ballistic, the causal region has a rich internal structure, which, depending on the observable, displays ballistic or super-ballistic features. In contrast, the causal region of entanglement entropy is featureless and its edge is always ballistic, irrespective of the interaction range. Our results shed light on the propagation of information in long-range interacting lattice models and pave the way to future experiments, which are discussed.
In a recent paper (Phys. Rev. Lett. 123, 210602), Kozin and Kyriienko claim to realize genuine ground state time crystals by studying models with long-ranged and infinite-body interactions. Here we point out that their models are doubly problematic: they are unrealizable ${it and}$ they violate well established principles for defining phases of matter. Indeed with infinite body operators allowed, almost all quantum systems are time crystals. In addition, one of their models is highly unstable and another amounts to isolating, via fine tuning, a single degree of freedom in a many body system--allowing for this elevates the pendulum of Galileo and Huygens to a genuine time crystal.
124 - Michael Kastner 2011
The approach to equilibrium is studied for long-range quantum Ising models where the interaction strength decays like r^{-alpha} at large distances r with an exponent $alpha$ not exceeding the lattice dimension. For a large class of observables and i nitial states, the time evolution of expectation values can be calculated. We prove analytically that, at a given instant of time t and for sufficiently large system size N, the expectation value of some observable <A>(t) will practically be unchanged from its initial value <A>(0). This finding implies that, for large enough N, equilibration effectively occurs on a time scale beyond the experimentally accessible one and will not be observed in practice.
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issu e by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power-law with distance $propto r^{-alpha}$, $alpha>0$. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for $alpha>2$; weakly long-range for $1<alpha<2$ without a clear light cone but with a finite propagation speed of almost all excitations; and fully non-local for $alpha<1$ with instantaneous transmission of correlations. This last regime breaks generalized Lieb--Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasi-particles remains valid, allowing an intuitive interpretation of our findings via divergences of quasi-particle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
Interacting quantum spin models are remarkably useful for describing different types of physical, chemical, and biological systems. Significant understanding of their equilibrium properties has been achieved to date, especially for the case of spin m odels with short-range couplings. However, progress towards the development of a comparable understanding in long-range interacting models, in particular out-of-equilibrium, remains limited. In a recent work, we proposed a semiclassical numerical method to study spin models, the discrete truncated Wigner approximation (DTWA), and demonstrated its capability to correctly capture the dynamics of one- and two-point correlations in one dimensional (1D) systems. Here we go one step forward and use the DTWA method to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. We compute spatial and time-dependent correlations for spin-couplings that decay with distance as a power-law and determine the velocity at which correlations propagate through the system. Sharp changes in the behavior of those velocities are found as a function of the power-law decay exponent. Our predictions are relevant for a broad range of systems including solid state materials, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. We validate the DTWA predictions for small 2D systems and 1D systems, but ultimately, in the spirt of quantum simulation, experiments will be needed to confirm our predictions for large 2D systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا