ترغب بنشر مسار تعليمي؟ اضغط هنا

The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network participants and help to protect the network from adversaries. In the literature, proposals of DTRMS have been applied to various Cyber-physical Systems (CPS) applications, including supply chains, smart cities and distributed energy trading. In this chapter, we outline the building blocks of a generic DTRMS and discuss how it can benefit from blockchain. To highlight the significance of DTRMS, we present the state-of-the-art of DTRMS in various field of CPS applications. In addition, we also outline challenges and future directions in developing DTRMS for CPS.
Authorization or access control limits the actions a user may perform on a computer system, based on predetermined access control policies, thus preventing access by illegitimate actors. Access control for the Internet of Things (IoT) should be tailo red to take inherent IoT network scale and device resource constraints into consideration. However, common authorization systems in IoT employ conventional schemes, which suffer from overheads and centralization. Recent research trends suggest that blockchain has the potential to tackle the issues of access control in IoT. However, proposed solutions overlook the importance of building dynamic and flexible access control mechanisms. In this paper, we design a decentralized attribute-based access control mechanism with an auxiliary Trust and Reputation System (TRS) for IoT authorization. Our system progressively quantifies the trust and reputation scores of each node in the network and incorporates the scores into the access control mechanism to achieve dynamic and flexible access control. We design our system to run on a public blockchain, but we separate the storage of sensitive information, such as users attributes, to private sidechains for privacy preservation. We implement our solution in a public Rinkeby Ethereum test-network interconnected with a lab-scale testbed. Our evaluations consider various performance metrics to highlight the applicability of our solution for IoT contexts.
An Intrusion Detection System (IDS) aims to alert users of incoming attacks by deploying a detector that monitors network traffic continuously. As an effort to increase detection capabilities, a set of independent IDS detectors typically work collabo ratively to build intelligence of holistic network representation, which is referred to as Collaborative Intrusion Detection System (CIDS). However, developing an effective CIDS, particularly for the IoT ecosystem raises several challenges. Recent trends and advances in blockchain technology, which provides assurance in distributed trust and secure immutable storage, may contribute towards the design of effective CIDS. In this poster abstract, we present our ongoing work on a decentralized CIDS for IoT, which is based on blockchain technology. We propose an architecture that provides accountable trust establishment, which promotes incentives and penalties, and scalable intrusion information storage by exchanging bloom filters. We are currently implementing a proof-of-concept of our modular architecture in a local test-bed and evaluate its effectiveness in detecting common attacks in IoT networks and the associated overhead.
Security and privacy in Direct Load Control (DLC) is a fundamental challenge in smart grids. In this paper, we propose a blockchain-based framework to increase security and privacy of DLC. We propose a method whereby participating nodes share their d ata with the distribution company in an anonymous and secure manner. To reduce the associated overhead for data dissemination, we propose a hash-based transaction generation method. We also outline the DLC process for managing the load in consumer site. Qualitative analysis demonstrates the security and privacy of the proposed method.
Blockchain is increasingly being used as a distributed, anonymous, trustless framework for energy trading in smart grids. However, most of the existing solutions suffer from reliance on Trusted Third Parties (TTP), lack of privacy, and traffic and pr ocessing overheads. In our previous work, we have proposed a Secure Private Blockchain-based framework (SPB) for energy trading to address the aforementioned challenges. In this paper, we present a proof-on-concept implementation of SPB on the Ethereum private network to demonstrates SPBs applicability for energy trading. We benchmark SPBs performance against the relevant state-of-the-art. The implementation results demonstrate that SPB incurs lower overheads and monetary cost for end users to trade energy compared to existing solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا