ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent advances in 3D perception have shown impressive progress in understanding geometric structures of 3Dshapes and even scenes. Inspired by these advances in geometric understanding, we aim to imbue image-based perception with representations lear ned under geometric constraints. We introduce an approach to learn view-invariant,geometry-aware representations for network pre-training, based on multi-view RGB-D data, that can then be effectively transferred to downstream 2D tasks. We propose to employ contrastive learning under both multi-view im-age constraints and image-geometry constraints to encode3D priors into learned 2D representations. This results not only in improvement over 2D-only representation learning on the image-based tasks of semantic segmentation, instance segmentation, and object detection on real-world in-door datasets, but moreover, provides significant improvement in the low data regime. We show a significant improvement of 6.0% on semantic segmentation on full data as well as 11.9% on 20% data against baselines on ScanNet.
This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training recipes f or standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.
158 - Saining Xie , Jiatao Gu , Demi Guo 2020
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been inst rumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g., by loss re-weightin g, data re-sampling, or transfer learning from head- to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
Over the past several years progress in designing better neural network architectures for visual recognition has been substantial. To help sustain this rate of progress, in this work we propose to reexamine the methodology for comparing network archi tectures. In particular, we introduce a new comparison paradigm of distribution estimates, in which network design spaces are compared by applying statistical techniques to populations of sampled models, while controlling for confounding factors like network complexity. Compared to current methodologies of comparing point and curve estimates of model families, distribution estimates paint a more complete picture of the entire design landscape. As a case study, we examine design spaces used in neural architecture search (NAS). We find significant statistical differences between recent NAS design space variants that have been largely overlooked. Furthermore, our analysis reveals that the design spaces for standard model families like ResNeXt can be comparable to the more complex ones used in recent NAS work. We hope these insights into distribution analysis will enable more robust progress toward discovering better networks for visual recognition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا