ﻻ يوجد ملخص باللغة العربية
The long-tail distribution of the visual world poses great challenges for deep learning based classification models on how to handle the class imbalance problem. Existing solutions usually involve class-balancing strategies, e.g., by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers. In this work, we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition. The findings are surprising: (1) data imbalance might not be an issue in learning high-quality representations; (2) with representations learned with the simplest instance-balanced (natural) sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier. We conduct extensive experiments and set new state-of-the-art performance on common long-tailed benchmarks like ImageNet-LT, Places-LT and iNaturalist, showing that it is possible to outperform carefully designed losses, sampling strategies, even complex modules with memory, by using a straightforward approach that decouples representation and classification. Our code is available at https://github.com/facebookresearch/classifier-balancing.
Long-tail recognition tackles the natural non-uniformly distributed data in real-world scenarios. While modern classifiers perform well on populated classes, its performance degrades significantly on tail classes. Humans, however, are less affected b
Real-world imagery is often characterized by a significant imbalance of the number of images per class, leading to long-tailed distributions. An effective and simple approach to long-tailed visual recognition is to learn feature representations and a
The problem of long-tailed recognition, where the number of examples per class is highly unbalanced, is considered. While training with class-balanced sampling has been shown effective for this problem, it is known to over-fit to few-shot classes. It
Real-world visual recognition problems often exhibit long-tailed distributions, where the amount of data for learning in different categories shows significant imbalance. Standard classification models learned on such data distribution often make bia
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively allevia