ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we develop a new class of models for a compact star with anisotropic stresses inside the matter distribution. By assuming a linear equation of state for the anisotropic matter composition of the star we solve the Einstein field equatio ns. In our approach, for the interior solutions we use a particular form of the ansatz for the metric function $g_{rr}$. The exterior solution is assumed as Schwarzschild metric and is joined with the interior metric obtained across the boundary of the star. These matching of the metrices along with the condition of the vanishing radial pressure at the boundary lead us to determine the model parameters. The physical acceptability of the solutions has verified by making use of the current estimated data available from the pulsar 4U1608-52. Thereafter, assuming anisotropy due to tidal effects we calculate the Love numbers from our model and compare the results with the observed compact stars, viz. KS 1731- 260,4U 1608- 52,4U 1724- 207,4U 1820- 30,SAX J1748.9-2021 and EXO 1745-268. The overall situation confirms physical viability of the proposed approach,which can shed new light on the interior of the compact relativistic objects.
In this article we propose a relativistic model of a static spherically symmetric anisotropic strange star with the help of Tolman-Kuchowicz (TK) metric potentials [Tolman, Phys. Rev. {bf55}, 364 (1939) and Kuchowicz, Acta Phys. Pol. {bf33}, 541 (196 8)]. The form of the potentials are $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ where $a$, $b$, $B$ and $C$ are constants which we have to evaluate using boundary conditions. We also consider the simplest form of the phenomenological MIT bag equation of state (EOS) to represent the strange quark matter (SQM) distribution inside the stellar system. Here, the radial pressure $p_r$ relates with the density profile $rho$ as follows, $p_r(r)=frac{1}{3}[rho(r)-4B_g]$, where $B_g$ is the Bag constant. To check the physical acceptability and stability of the stellar system based on the obtained solutions, we have performed various physical tests. It is shown that the model satisfies all the stability criteria, including nonsingular nature of the density and pressure, implies stable nature. Here, the Bag constant for different strange star candidates are found to be $(68-70)$~MeV/{fm}$^3$ which satisfies all the acceptability criteria and remains in the experimental range.
We provide a strange star model under the framework of general relativity by using a general linear equation of state (EOS). The solution set thus obtained is employed on altogether 20 compact star candidates to constraint values of MIT bag model. No specific value of the bag constant ($B$) a-priori is assumed rather possible range of values for bag constant is determined from observational data of the said set of compact stars. To do so the Tolman-Oppenheimer-Volkoff (TOV) equation is solved by homotopy perturbation method (HPM) and hence we get a mass function for the stellar system. The solution to the Einstein field equations represents a non-singular, causal and stable stellar structure which can be related to strange stars. Eventually we get an interesting result on the range of the bag constant as 41.58~MeV~fm$^{-3}< B <$319.31~MeV~fm$^{-3}$. We have found the maximum surface redshift $Z^{max}_{s}=0.63$ and shown that the central redshift ($Z_c$) can not have value larger than $2k$, where $k=2.010789 pm 0.073203$. Also we provide a possible value of bag constant for neutron star (NS) with quark core using hadronic as well as quark EOS.
We investigate a simplified model for the strange stars in the framework of Finslerian spacetime geometry, composed of charged fluid. It is considered that the fluid consisting of three flavor quarks including a small amount of non-interacting electr ons to maintain the chemical equilibrium and assumed that the fluid is compressible by nature. To obtain the simplified form of charged strange star we considered constant flag curvature. Based on geometry, we have developed the field equations within the localized charge distribution. We considered that the strange quarks distributed within the stellar system are compiled with the MIT bag model type of equation of state (EOS) and the charge distribution within the system follows a power law. We represent the exterior spacetime by the Finslerian Ressiner-Nordstr{o}m space-time. The maximum anisotropic stress is obtained at the surface of the system. Whether the system is in equilibrium or not, has been examined with respect to the Tolman-Oppenheimer-Volkoff (TOV) equation, Herrera cracking concept, different energy conditions and adiabatic index. We obtain that the total charge is of the order of 10$^{20}$ C and the corresponding electric field is of around 10$^{22}$ V/m. The central density and central pressure vary inversely with the charge. Varying the free parameter (charge constant) of the model, we find the generalized mass-radius variation of strange stars and determine the maximum limited mass with the corresponding radius. Furthermore, we also considered the variation of mass and radius against central density respectively.
We attempt to study a singularity-free model for the spherically symmetric anisotropic strange stars under Einsteins general theory of relativity by exploiting the Tolman-Kuchowicz metric. Further, we have assumed that the cosmological constant $Lamb da$ is a scalar variable dependent on the spatial coordinate $r$. To describe the strange star candidates we have considered that they are made of strange quark matter (SQM) distribution, which is assumed to be governed by the MIT bag equation of state. To obtain unknown constants of the stellar system we match the interior Tolman-Kuchowicz metric to the exterior modified Schwarzschild metric with the cosmological constant, at the surface of the system. Following Deb et al. we have predicted the exact values of the radii for different strange star candidates based on the observed values of the masses of the stellar objects and the chosen parametric values of the $Lambda$ as well as the bag constant $mathcal{B}$. The set of solutions satisfies all the physical requirements to represent strange stars. Interestingly, our study reveals that as the values of the $Lambda$ and $mathcal{B}$ increase the anisotropic system becomes gradually smaller in size turning the whole system into a more compact ultra-dense stellar object.
We study strange stars in the framework of $fleft(R,mathcal{T}right)$ theory of gravity where the strange quark matter distribution inside the stellar system is governed by the phenomenological MIT Bag model equation of state (EOS). Further, for a sp ecific value of $B$ and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of $fleft(R,mathcal{T}right)$ gravity and have studied in detail the dependence of the different physical parameters due to the chosen different values of $chi$. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in $fleft(R,mathcal{T}right)$ gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of $chi$ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified $fleft(R,mathcal{T}right)$ gravity is a suitable theory to explain massive stellar systems like recent magnetars, massive pulsars and super-Chandrasekhar stars, which can not be explained in the framework of GR. However, for $chi=0$ the standard results of Einsteinian gravity are retrieved.
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar $R$ and the trace of the energy momentum tensor~$mathcal{T}$ given as $fleft(R,mathcal{T}right)=R+2chi T$. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as $p=frac{1}{3}left(rho-4Bright)$, where $B$ is the bag constant. We have obtained an exact solution of the modified form of the the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of $f(R,mathcal{T})$ gravity theory and studied the dependence of different physical properties, viz., total mass, radius, energy density and pressure on the chosen values of $chi$. Further, to examine physical acceptability of the proposed stellar model in detail, we conducted different tests, viz. energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the Bag constant we have predicted numerical values of different physical parameters in tabular format for the different strange stars. It is found that as the factor $chi$ increases the strange stars shrink gradually and become less massive to turn into a more compact stellar system. The maximum mass point is well within the observational limits and hence our proposed model is suitable to explain the ultra dense compact stars. For $chi=0$ we retrieve as usual the standard results of general relativity (GR).
The concept of oscillatory Universe appears to be realistic and buried in the dynamic dark energy equation of state. We explore its evolutionary history under the frame work of general relativity. We observe that oscillations do not go unnoticed with such an equation of state and that their effects persist later on in cosmic evolution. The `classical general relativity seems to retain the past history of oscillatory Universe in the form of increasing scale factor as the classical thermodynamics retains this history in the form of increasing cosmological entropy.
Among various phenomenological $Lambda$ models, a time-dependent model $dot Lambdasim H^3$ is selected here to investigate the $Lambda$-CDM cosmology. Using this model the expressions for the time-dependent equation of state parameter $omega$ and oth er physical parameters are derived. It is shown that in $H^3$ model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter $q$ during cosmic evolution.
We perform a deductive study of accelerating Universe and focus on the importance of variable time-dependent $Lambda$ in the Einsteins field equations under the phenomenological assumption, $Lambda =alpha H^2$ for the full physical range of $alpha$. The relevance of variable $Lambda$ with regard to various key issues like dark matter, dark energy, geometry of the field, age of the Universe, deceleration parameter and barotropic equation of state has been trivially addressed. The deceleration parameter and the barotropic equation of state parameter obey a straight line relationship for a flat Universe described by Friedmann and Raychaudhuri equations. Both the parameters are found identical for $alpha = 1$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا