ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged anisotropic strange stars in Finslerian geometry

126   0   0.0 ( 0 )
 نشر من قبل Debabrata Deb
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a simplified model for the strange stars in the framework of Finslerian spacetime geometry, composed of charged fluid. It is considered that the fluid consisting of three flavor quarks including a small amount of non-interacting electrons to maintain the chemical equilibrium and assumed that the fluid is compressible by nature. To obtain the simplified form of charged strange star we considered constant flag curvature. Based on geometry, we have developed the field equations within the localized charge distribution. We considered that the strange quarks distributed within the stellar system are compiled with the MIT bag model type of equation of state (EOS) and the charge distribution within the system follows a power law. We represent the exterior spacetime by the Finslerian Ressiner-Nordstr{o}m space-time. The maximum anisotropic stress is obtained at the surface of the system. Whether the system is in equilibrium or not, has been examined with respect to the Tolman-Oppenheimer-Volkoff (TOV) equation, Herrera cracking concept, different energy conditions and adiabatic index. We obtain that the total charge is of the order of 10$^{20}$ C and the corresponding electric field is of around 10$^{22}$ V/m. The central density and central pressure vary inversely with the charge. Varying the free parameter (charge constant) of the model, we find the generalized mass-radius variation of strange stars and determine the maximum limited mass with the corresponding radius. Furthermore, we also considered the variation of mass and radius against central density respectively.



قيم البحث

اقرأ أيضاً

In the present paper, we report on a study of the anisotropic strange stars under Finsler geometry. Keeping in mind that Finsler spacetime is not merely a generalization of Riemannian geometry rather the main idea is the projectivized tangent bundle of the manifold $mathpzc{M}$, we have developed the respective field equations. Thereafter, we consider the strange quark distribution inside the stellar system followed by the MIT bag model equation of state (EOS). To find out the stability and also the physical acceptability of the stellar configuration, we perform in detail some basic physical tests of the proposed model. The results of the testing show that the system is consistent with the Tolman-Oppenheimer-Volkoff (TOV) equation, Herrera cracking concept, different energy conditions and adiabatic index. One important result that we observe is that the anisotropic stress reaches to the maximum at the surface of the stellar configuration. We calculate (i) the maximum mass as well as corresponding radius, (ii) the central density of the strange stars for finite values of bag constant $B_g$ and (iii) the fractional binding energy of the system. This study shows that Finsler geometry is especially suitable to explain massive stellar systems.
We attempt to study a singularity-free model for the spherically symmetric anisotropic strange stars under Einsteins general theory of relativity by exploiting the Tolman-Kuchowicz metric. Further, we have assumed that the cosmological constant $Lamb da$ is a scalar variable dependent on the spatial coordinate $r$. To describe the strange star candidates we have considered that they are made of strange quark matter (SQM) distribution, which is assumed to be governed by the MIT bag equation of state. To obtain unknown constants of the stellar system we match the interior Tolman-Kuchowicz metric to the exterior modified Schwarzschild metric with the cosmological constant, at the surface of the system. Following Deb et al. we have predicted the exact values of the radii for different strange star candidates based on the observed values of the masses of the stellar objects and the chosen parametric values of the $Lambda$ as well as the bag constant $mathcal{B}$. The set of solutions satisfies all the physical requirements to represent strange stars. Interestingly, our study reveals that as the values of the $Lambda$ and $mathcal{B}$ increase the anisotropic system becomes gradually smaller in size turning the whole system into a more compact ultra-dense stellar object.
We present here a detailed analysis on the effects of charge on the anisotropic strange star candidates by considering a spherically symmetric interior spacetime metric. To obtain exact solution of the Einstein-Maxwell field equations we have conside red the anisotropic strange quark matter (SQM) distribution governed by the simplified MIT bag equation of state (EOS), $p=frac{1}{3}left( {rho}-4,B right)$, where $B$ is the bag constant and the distribution of the electrical charge is given as $q(r)=Qleft({r}/{R}right)^3=alpha {r^3}$, where $alpha$ is a constant. To this end, to calculate different constants we have described the exterior spacetime by the Reissner-Nordstr{o}m metric. By using the values of the observed mass for the different strange star candidates we have maximized anisotropic stress at the surface to predict the exact values of the radius for the different values of $alpha$ and a specific value of the bag constant. Further, we perform different tests to study the physical validity and the stability of the proposed stellar model. We found accumulation of the electric charge distribution is maximum at the surface having electric charge of the order ${{10}^{20}}~C$ and electric field of the order ${10}^{21-22}~V/cm$. To study the different physical parameters and the effects of charge on the anisotropic stellar system we have presented our analysis graphically and in the tabular format by considering $LMC~X-4$ as the representative of the strange star candidates.
In this exposition, we seek solutions of the Einstein-Maxwell field equations in the presence of a massive scalar field cast in the Brans-Dicke (BD) formalism which describes charged anisotropic strange stars. The interior spacetime is described by a spherically symmetric static metric of embedding class I. This reduces the problem to a single-generating function of the metric potential which is chosen by appealing to physics based on regularity at each interior point of the stellar interior. The resulting model is subjected to rigorous physical checks based on stability, causality and regularity. We show that our solutions describe compact objects such as PSR J1903+327; Cen X-3; EXO 1785-248 & LMC X-4 to an excellent approximation. Novel results of our investigation reveal that the scalar field leads to higher surface charge densities which in turn affects the compactness and upper and lower values imposed by the modified Buchdahl limit for charged stars. Our results also show that the electric and scalar fields which originate from entirely different sources couple to alter physical characteristics such as mass-radius relation and surface redshift of compact objects. This superposition of the electric and scalar fields is enhanced by an increase in the BD coupling constant, $omega_{BD}$.
In this paper we present a strange stellar model using Tolman $V$ type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and mad e of an anisotropic fluid. Choosing different values of $n$ we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter $n=1/2$ we find physically acceptable features of the stellar object. Further we conduct different physical tests, viz., the energy condition, generalized TOV equation, Herreras cracking concept, etc., to confirm physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars we derive exact values of some of the physical parameters and exhibit their features in a tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا