ﻻ يوجد ملخص باللغة العربية
In this article we propose a relativistic model of a static spherically symmetric anisotropic strange star with the help of Tolman-Kuchowicz (TK) metric potentials [Tolman, Phys. Rev. {bf55}, 364 (1939) and Kuchowicz, Acta Phys. Pol. {bf33}, 541 (1968)]. The form of the potentials are $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ where $a$, $b$, $B$ and $C$ are constants which we have to evaluate using boundary conditions. We also consider the simplest form of the phenomenological MIT bag equation of state (EOS) to represent the strange quark matter (SQM) distribution inside the stellar system. Here, the radial pressure $p_r$ relates with the density profile $rho$ as follows, $p_r(r)=frac{1}{3}[rho(r)-4B_g]$, where $B_g$ is the Bag constant. To check the physical acceptability and stability of the stellar system based on the obtained solutions, we have performed various physical tests. It is shown that the model satisfies all the stability criteria, including nonsingular nature of the density and pressure, implies stable nature. Here, the Bag constant for different strange star candidates are found to be $(68-70)$~MeV/{fm}$^3$ which satisfies all the acceptability criteria and remains in the experimental range.
We attempt to study a singularity-free model for the spherically symmetric anisotropic strange stars under Einsteins general theory of relativity by exploiting the Tolman-Kuchowicz metric. Further, we have assumed that the cosmological constant $Lamb
In the current article, we study anisotropic spherically symmetric strange star under the background of $f(R,T)$ gravity using the metric potentials of Tolman-Kuchowicz type~cite{Tolman1939,Kuchowicz1968} as $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^
In this paper we present a strange stellar model using Tolman $V$ type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and mad
We present here a detailed analysis on the effects of charge on the anisotropic strange star candidates by considering a spherically symmetric interior spacetime metric. To obtain exact solution of the Einstein-Maxwell field equations we have conside
The Maxwell electromagnetic theory embedded in an inhomogeneous Lema^{i}tre-Tolman-Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were no explored. In this wor