ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-fre e monomial ideals of projective dimension one, by introducing a combinatorial construction of a family of (cubical) cell complexes whose 1-skeletons are powers of a graph that supports the resolution of the ideal.
Let $R$ be a polynomial ring over a field and $M= bigoplus_n M_n$ a finitely generated graded $R$-module, minimally generated by homogeneous elements of degree zero with a graded $R$-minimal free resolution $mathbf{F}$. A Cohen-Macaulay module $M$ is Gorenstein when the graded resolution is symmetric. We give an upper bound for the first Hilbert coefficient, $e_1$ in terms of the shifts in the graded resolution of $M$. When $M = R/I$, a Gorenstein algebra, this bound agrees with the bound obtained in cite{ES} in Gorenstein algebras with quasi-pure resolution. We conjecture a similar bound for the higher coefficients.
Let $R=S/I$ be a graded algebra with $t_i$ and $T_i$ being the minimal and maximal shifts in the minimal $S$ resolution of $R$ at degree $i$. In this paper we prove that $t_nleq t_1+T_{n-1}$, for all $n$ and as a consequence, we show that for Gorenst ein algebras of codimension $h$, the subadditivity of maximal shifts $T_i$ in the minimal resolution holds for $i geq h-1$, i.e, we show that $T_i leq T_a+T_{i-a}$ for $igeq h-1$.
Let $R = k[w, x_1,..., x_n]/I$ be a graded Gorenstein Artin algebra . Then $I = ann F$ for some $F$ in the divided power algebra $k_{DP}[W, X_1,..., X_n]$. If $RI_2$ is a height one idealgenerated by $n$ quadrics, then $I_2 subset (w)$ after a possib le change of variables. Let $J = I cap k[x_1,..., x_n]$. Then $mu(I) le mu(J)+n+1$ and $I$ is said to be generic if $mu(I) = mu(J) + n+1$. In this article we prove necessary conditions, in terms of $F$, for an ideal to be generic. With some extra assumptions on the exponents of terms of $F$, we obtain a characterization for $I = ann F$ to be generic in codimension four.
We prove upper bounds for the Hilbert-Samuel multiplicity of standard graded Gorenstein algebras. The main tool that we use is Boij-Soderberg theory to obtain a decomposition of the Betti table of a Gorenstein algebra as the sum of rational multiples of symmetrized pure tables. Our bound agrees with the one in the quasi-pure case obtained by Srinivasan [J. Algebra, vol.~208, no.~2, (1998)].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا