ترغب بنشر مسار تعليمي؟ اضغط هنا

An Upper Bound for the First Hilbert Coefficient of Gorenstein Algebras and Modules

150   0   0.0 ( 0 )
 نشر من قبل Hema Srinivasan
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $R$ be a polynomial ring over a field and $M= bigoplus_n M_n$ a finitely generated graded $R$-module, minimally generated by homogeneous elements of degree zero with a graded $R$-minimal free resolution $mathbf{F}$. A Cohen-Macaulay module $M$ is Gorenstein when the graded resolution is symmetric. We give an upper bound for the first Hilbert coefficient, $e_1$ in terms of the shifts in the graded resolution of $M$. When $M = R/I$, a Gorenstein algebra, this bound agrees with the bound obtained in cite{ES} in Gorenstein algebras with quasi-pure resolution. We conjecture a similar bound for the higher coefficients.



قيم البحث

اقرأ أيضاً

We prove upper bounds for the Hilbert-Samuel multiplicity of standard graded Gorenstein algebras. The main tool that we use is Boij-Soderberg theory to obtain a decomposition of the Betti table of a Gorenstein algebra as the sum of rational multiples of symmetrized pure tables. Our bound agrees with the one in the quasi-pure case obtained by Srinivasan [J. Algebra, vol.~208, no.~2, (1998)].
221 - Amanda Croll 2013
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t,t^{-1}]-module associated to R. This module, denoted J(R), is the free Z[t,t ^{-1}]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The main result is a structure theorem for J(R) when R is a complete Gorenstein local ring; the link between periodicity and torsion stated above is a corollary.
Let fa be an ideal of a commutative Noetherian ring R and M and N two finitely generated R-modules. Let cd_{fa}(M,N) denote the supremum of the is such that H^i_{fa}(M,N) eq 0. First, by using the theory of Gorenstein homological dimensions, we obtai n several upper bounds for cd_{fa}(M,N). Next, over a Cohen-Macaulay local ring (R,fm), we show that cd_{fm}(M,N)=dim R-grade(Ann_RN,M), provided that either projective dimension of M or injective dimension of N is finite. Finally, over such rings, we establish an analogue of the Hartshorne-Lichtenbaum Vanishing Theorem in the context of generalized local cohomology modules.
161 - M.E. Rossi , G. Valla 2009
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic mathematical activity. Motivated by the ever increasing interest in this field, our goal is to gather together many new developments of this theory into one place, and to present them using a unifying approach which gives self-contained and easier proofs. In this text we shall discuss many results by different authors, following essentially the direction typified by the pioneering work of J. Sally. Our personal view of the subject is most visibly expressed by the presentation of Chapters 1 and 2 in which we discuss the use of the superficial elements and related devices. Basic techniques will be stressed with the aim of reproving recent results by using a more elementary approach. Over the past few years several papers have appeared which extend classical results on the theory of Hilbert functions to the case of filtered modules. The extension of the theory to the case of general filtrations on a module has one more important motivation. Namely, we have interesting applications to the study of graded algebras which are not associated to a filtration, in particular the Fiber cone and the Sally-module. We show here that each of these algebras fits into certain short exact sequences, together with algebras associated to filtrations. Hence one can study the Hilbert function and the depth of these algebras with the aid of the know-how we got in the case of a filtration.
We prove that, analogous to the HK density function, (used for studying the Hilbert-Kunz multiplicity, the leading coefficient of the HK function), there exists a $beta$-density function $g_{R, {bf m}}:[0,infty)longrightarrow {mathbb R}$, where $(R, {bf m})$ is the homogeneous coordinate ring associated to the toric pair $(X, D)$, such that $$int_0^{infty}g_{R, {bf m}}(x)dx = beta(R, {bf m}),$$ where $beta(R, {bf m})$ is the second coefficient of the Hilbert-Kunz function for $(R, {bf m})$, as constructed by Huneke-McDermott-Monsky. Moreover we prove, (1) the function $g_{R, {bf m}}:[0, infty)longrightarrow {mathbb R}$ is compactly supported and is continuous except at finitely many points, (2) the function $g_{R, {bf m}}$ is multiplicative for the Segre products with the expression involving the first two coefficients of the Hilbert polynomials of the rings involved. Here we also prove and use a result (which is a refined version of a result by Henk-Linke) on the boundedness of the coefficients of rational Ehrhart quasi-polynomials of convex rational polytopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا