ترغب بنشر مسار تعليمي؟ اضغط هنا

The high resolution non-dispersive spectroscopy and unprecedented sensitivity of Athena+ will revolutionize solar system observing: the origin of the ions producing Jupiters X-ray aurorae via charge exchange will be conclusively established, as well as their dynamics, giving clues to their acceleration mechanisms. X-ray aurorae on Saturn will be searched for to a depth unattainable by current Earth-bound observatories. The X-ray Integral Field Unit of Athena+ will map Mars expanding exosphere, which has a line-rich solar wind charge exchange spectrum, under differing solar wind conditions and through the seasons; relating Mars X-ray emission to its atmospheric loss will have significant impact also on the study of exoplanet atmospheres. Spectral mapping of cometary comae, which are spectacular X-ray sources with extremely line-rich spectra, will probe solar wind composition and speed at varying distances from the Sun. Athena+ will provide unique contributions also to exoplanetary astrophysics. Athena+ will pioneer the study of ingress/eclipse/egress effects during planetary orbits of hot-Jupiters, and will confirm/improve the evidence of Star-Planet Interactions (SPI) in a wider sample of planetary systems. Finally Athena+ will drastically improve the knowledge of the X-ray incident radiation on exoplanets, a key element for understanding the effects of atmospheric mass loss and of the chemical and physical evolution of planet atmospheres, particularly relevant in the case of young systems.
404 - L. Prisinzano 2012
Mechanisms involved in the star formation process and in particular the duration of the different phases of the cloud contraction are not yet fully understood. Photometric data alone suggest that objects coexist in the young cluster NGC6530 with ages from ~1 Myr up to 10 Myrs. We want to derive accurate stellar parameters and, in particular, stellar ages to be able to constrain a possible age spread in the star-forming region NGC6530. We used low-resolution spectra taken with VIMOS@VLT and literature spectra of standard stars to derive spectral types of a subsample of 94 candidate members of this cluster. We assign spectral types to 86 of the 88 confirmed cluster members and derive individual reddenings. Our data are better fitted by the anomalous reddening law with R$_{rm V}$=5. We confirm the presence of strong differential reddening in this region. We derive fundamental stellar parameters, such as effective temperatures, photospheric colors, luminosities, masses, and ages for 78 members, while for the remaining 8 YSOs we cannot determine the interstellar absorption, since they are likely accretors, and their V-I colors are bluer than their intrinsic colors. The cluster members studied in this work have masses between 0.4 and 4 M$_odot$ and ages between 1-2 Myrs and 6-7 Myrs. We find that the SE region is the most recent site of star formation, while the older YSOs are loosely clustered in the N and W regions. The presence of two distint generations of YSOs with different spatial distribution allows us to conclude that in this region there is an age spread of ~6-7 Myrs. This is consistent with the scenario of sequential star formation suggested in literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا