ﻻ يوجد ملخص باللغة العربية
The high resolution non-dispersive spectroscopy and unprecedented sensitivity of Athena+ will revolutionize solar system observing: the origin of the ions producing Jupiters X-ray aurorae via charge exchange will be conclusively established, as well as their dynamics, giving clues to their acceleration mechanisms. X-ray aurorae on Saturn will be searched for to a depth unattainable by current Earth-bound observatories. The X-ray Integral Field Unit of Athena+ will map Mars expanding exosphere, which has a line-rich solar wind charge exchange spectrum, under differing solar wind conditions and through the seasons; relating Mars X-ray emission to its atmospheric loss will have significant impact also on the study of exoplanet atmospheres. Spectral mapping of cometary comae, which are spectacular X-ray sources with extremely line-rich spectra, will probe solar wind composition and speed at varying distances from the Sun. Athena+ will provide unique contributions also to exoplanetary astrophysics. Athena+ will pioneer the study of ingress/eclipse/egress effects during planetary orbits of hot-Jupiters, and will confirm/improve the evidence of Star-Planet Interactions (SPI) in a wider sample of planetary systems. Finally Athena+ will drastically improve the knowledge of the X-ray incident radiation on exoplanets, a key element for understanding the effects of atmospheric mass loss and of the chemical and physical evolution of planet atmospheres, particularly relevant in the case of young systems.
The backbone of the large-scale structure of the Universe is determined by processes on a cosmological scale and by the gravitational interaction of the dominant dark matter. However, the mobile baryon population shapes the appearance of these struct
Major astrophysical questions related to the formation and evolution of structures, and more specifically of galaxy groups and clusters, will still be open in the coming decade and beyond: what is the interplay of galaxy, supermassive black hole, and
As the nodes of the cosmic web, clusters of galaxies trace the large-scale distribution of matter in the Universe. They are thus privileged sites in which to investigate the complex physics of structure formation. However, the complete story of how t
This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble
The Athena+ X-ray mirror will provide a collecting area of 2 m^2 at 1 keV and an angular resolution of 5 arc seconds Half Energy Width. The manufacture and performance of this mirror is of paramount importance to the success of the mission. In order