ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral classification and HR diagram of pre-main sequence stars in NGC6530

444   0   0.0 ( 0 )
 نشر من قبل Loredana Prisinzano
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Prisinzano




اسأل ChatGPT حول البحث

Mechanisms involved in the star formation process and in particular the duration of the different phases of the cloud contraction are not yet fully understood. Photometric data alone suggest that objects coexist in the young cluster NGC6530 with ages from ~1 Myr up to 10 Myrs. We want to derive accurate stellar parameters and, in particular, stellar ages to be able to constrain a possible age spread in the star-forming region NGC6530. We used low-resolution spectra taken with VIMOS@VLT and literature spectra of standard stars to derive spectral types of a subsample of 94 candidate members of this cluster. We assign spectral types to 86 of the 88 confirmed cluster members and derive individual reddenings. Our data are better fitted by the anomalous reddening law with R$_{rm V}$=5. We confirm the presence of strong differential reddening in this region. We derive fundamental stellar parameters, such as effective temperatures, photospheric colors, luminosities, masses, and ages for 78 members, while for the remaining 8 YSOs we cannot determine the interstellar absorption, since they are likely accretors, and their V-I colors are bluer than their intrinsic colors. The cluster members studied in this work have masses between 0.4 and 4 M$_odot$ and ages between 1-2 Myrs and 6-7 Myrs. We find that the SE region is the most recent site of star formation, while the older YSOs are loosely clustered in the N and W regions. The presence of two distint generations of YSOs with different spatial distribution allows us to conclude that in this region there is an age spread of ~6-7 Myrs. This is consistent with the scenario of sequential star formation suggested in literature.



قيم البحث

اقرأ أيضاً

195 - D. Fedele 2009
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of ages between 1 - 50 Myr. The fraction of accreting stars decreases from ~60% at 1.5 - 2 Myr to ~2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of $10^{-11}$ Msun yr-1. We compared the fraction of stars showing ongoing accretion (f_acc) to the fraction of stars with near-to-mid infrared excess (f_IRAC). In most cases we find f_acc < f_IRAC, i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > 10^{-11} Msun yr-1, while ~20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (t_acc) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (t_IRAC) of 2.9 Myr. Planet formation, and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effec t is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).
Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. Th e purpose of the present study is to detect such rare stars, which we named as Transition Phase (TP) candidates - stars evolving from the PMS to the MS phase. We identified 98 TP candidates using photometric analysis of a sample of 2167 classical Be (CBe) and 225 Herbig Ae/Be (HAeBe) stars. This identification is done by analyzing the near- and mid-infrared excess and their location in the optical color-magnitude diagram. The age and mass of 58 of these TP candidates are determined to be between 0.1-5 Myr and 2-10.5 M$_odot$, respectively. The TP candidates are found to possess rotational velocity and color excess values in between CBe and HAeBe stars, which is reconfirmed by generating a set of synthetic samples using the machine learning approach.
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.
Low-mass pre-main sequence (PMS) stars are strong and variable X-ray emitters, as has been well established by EINSTEIN and ROSAT observatories. It was originally believed that this emission was of thermal nature and primarily originated from coronal activity (magnetically confined loops, in analogy with Solar activity) on contracting young stars. Broadband spectral analysis showed that the emission was not isothermal and that elemental abundances were non-Solar. The resolving power of the Chandra and XMM X-ray gratings spectrometers have provided the first, tantalizing details concerning the physical conditions such as temperatures, densities, and abundances that characterize the X-ray emitting regions of young star. These existing high resolution spectrometers, however, simply do not have the effective area to measure diagnostic lines for a large number of PMS stars over required to answer global questions such as: how does magnetic activity in PMS stars differ from that of main sequence stars, how do they evolve, what determines the population structure and activity in stellar clusters, and how does the activity influence the evolution of protostellar disks. Highly resolved (R>3000) X-ray spectroscopy at orders of magnitude greater efficiency than currently available will provide major advances in answering these questions. This requires the ability to resolve the key diagnostic emission lines with a precision of better than 100 km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا