ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a search for gravitational arcs in a sample of X-ray luminous, medium redshift clusters of galaxies. The sample of clusters is called ARCRAIDER, is based on the ROSAT Bright Survey (RBS) and fulfills the following criteria: (a) X-ray lumin osity Lx>=0.5x10^45erg/s (0.5-2keV band), (b) redshift range 0.1<=z<=0.52, (c) classified as clusters in the RBS, (d) not a member of the Abell catalogue and, finally, (e) visible from the ESO sites La Silla/Paranal (declination delta<=20deg). In total we found more than 35 (giant) arc/arclet candidates, including a possible radial arc, one galaxy-galaxy lensing event and a possible quasar triple image in 14 of the 21 clusters of galaxies. Hence 66% of the sample members are possible lenses.
We investigate the dependence of star formation and the distribution of the components of galaxies on the strength of ram pressure. Several mock observations in X-ray, H$alpha$ and HI wavelength for different ram-pressure scenarios are presented. By applying a combined N-body/hydrodynamic description (GADGET-2) with radiative cooling and a recipe for star formation and stellar feedback 12 different ram-pressure stripping scenarios for disc galaxies were calculated. Special emphasis was put on the gas within the disc and in the surroundings. All gas particles within the computational domain having the same mass resolution. The relative velocity was varied from 100 km/s to 1000 km/s in different surrounding gas densities in the range from $1times10^{-28}$ to $5times10^{-27}$ g/cm$^3$. The temperature of the surrounding gas was initially $1times10^{7}$ K. The star formation of a galaxy is enhanced by more than a magnitude in the simulation with a high ram-pressure ($5times10^{-11}$ dyn/cm$^2$) in comparison to the same system evolving in isolation. The enhancement of the star formation depends more on the surrounding gas density than on the relative velocity. Up to 95% of all newly formed stars can be found in the wake of the galaxy out to distances of more than 350 kpc behind the stellar disc. Continuously stars fall back to the old stellar disc, building up a bulge-like structure. Young stars can be found throughout the stripped wake with surface densities locally comparable to values in the inner stellar disc. Ram-pressure stripping can shift the location of star formation from the disc into the wake on very short timescales. (Abridged)
73 - J. Weratschnig 2008
We study the X-ray morphology and dynamics of the galaxy cluster Abell 514. Also, the relation between the X-ray properties and Faraday Rotation measures of this cluster are investigated in order to study the connection of magnetic fields and the int ra-cluster medium. We use two combined XMM - Newton pointings that are split into three distinct observations. The data allow us to evaluate the overall cluster properties like temperature and metallicity with high accuracy. Additionally, a temperature map and the metallicity distribution are computed, which are used to study the dynamical state of the cluster in detail. Abell 514 represents an interesting merger cluster with many substructures visible in the X-ray image and in the temperature and abundance distributions. The new XMM - Newton data of Abell 514 confirm the relation between the X-ray brightness and the sigma of the Rotation Measure (S_X - sigma_RM relation) proposed by Dolag et al. (2001).
We present the work of an international team at the International Space Science Institute (ISSI) in Bern that worked together to review the current observational and theoretical status of the non-virialised X-ray emission components in clusters of ga laxies. The subject is important for the study of large-scale hierarchical structure formation and to shed light on the missing baryon problem. The topics of the team work include thermal emission and absorption from the warm-hot intergalactic medium, non-thermal X-ray emission in clusters of galaxies, physical processes and chemical enrichment of this medium and clusters of galaxies, and the relationship between all these processes. One of the main goals of the team is to write and discuss a series of review papers on this subject. These reviews are intended as introductory text and reference for scientists wishing to work actively in this field. The team consists of sixteen experts in observations, theory and numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا