ﻻ يوجد ملخص باللغة العربية
We investigate the dependence of star formation and the distribution of the components of galaxies on the strength of ram pressure. Several mock observations in X-ray, H$alpha$ and HI wavelength for different ram-pressure scenarios are presented. By applying a combined N-body/hydrodynamic description (GADGET-2) with radiative cooling and a recipe for star formation and stellar feedback 12 different ram-pressure stripping scenarios for disc galaxies were calculated. Special emphasis was put on the gas within the disc and in the surroundings. All gas particles within the computational domain having the same mass resolution. The relative velocity was varied from 100 km/s to 1000 km/s in different surrounding gas densities in the range from $1times10^{-28}$ to $5times10^{-27}$ g/cm$^3$. The temperature of the surrounding gas was initially $1times10^{7}$ K. The star formation of a galaxy is enhanced by more than a magnitude in the simulation with a high ram-pressure ($5times10^{-11}$ dyn/cm$^2$) in comparison to the same system evolving in isolation. The enhancement of the star formation depends more on the surrounding gas density than on the relative velocity. Up to 95% of all newly formed stars can be found in the wake of the galaxy out to distances of more than 350 kpc behind the stellar disc. Continuously stars fall back to the old stellar disc, building up a bulge-like structure. Young stars can be found throughout the stripped wake with surface densities locally comparable to values in the inner stellar disc. Ram-pressure stripping can shift the location of star formation from the disc into the wake on very short timescales. (Abridged)
Ram-pressure stripping (RPS) is a well observed phenomenon of massive spiral galaxies passing through the hot intra-cluster medium (ICM) of galaxy clusters. For dwarf galaxies (DGs) within a cluster, the transformation from gaseous to gas-poor system
We investigate the influence of ram-pressure stripping on the star formation and the mass distribution in simulated spiral galaxies. Special emphasis is put on the question where the newly formed stars are located. The stripping radius from the simul
We study galaxies undergoing ram pressure stripping in the Virgo cluster to examine whether we can identify any discernible trend in their star formation activity. We first use 48 galaxies undergoing different stages of stripping based on HI morpholo
The formation mechanism of tidal dwarf galaxies means they are expected to contain little or no dark matter. As such, they might be expected to be very sensitive to their environment. We investigate the impact of ram pressure on tidal dwarf galaxies
We investigate the effects of ram pressure stripping on gas-rich disk galaxies in the cluster environment. Ram pressure stripping principally effects the atomic gas in disk galaxies, stripping away outer disk gas to a truncation radius. We demonstrat