ترغب بنشر مسار تعليمي؟ اضغط هنا

ARCRAIDER II: Arc search in a sample of non-Abell clusters

359   0   0.0 ( 0 )
 نشر من قبل Wolfgang Kausch
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for gravitational arcs in a sample of X-ray luminous, medium redshift clusters of galaxies. The sample of clusters is called ARCRAIDER, is based on the ROSAT Bright Survey (RBS) and fulfills the following criteria: (a) X-ray luminosity Lx>=0.5x10^45erg/s (0.5-2keV band), (b) redshift range 0.1<=z<=0.52, (c) classified as clusters in the RBS, (d) not a member of the Abell catalogue and, finally, (e) visible from the ESO sites La Silla/Paranal (declination delta<=20deg). In total we found more than 35 (giant) arc/arclet candidates, including a possible radial arc, one galaxy-galaxy lensing event and a possible quasar triple image in 14 of the 21 clusters of galaxies. Hence 66% of the sample members are possible lenses.

قيم البحث

اقرأ أيضاً

The growth of structure in the Universe is tightly correlated with the cosmological parameters. Galaxy clusters as tracers of the large scale structure are the ideal objects to witness this evolution. The X-ray bright, hot gas in the potential well o f a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest clusters in the Universe, building up a local sample of galaxy clusters. Here we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, OmegaM and sigma8. In paper I we describe the data analysis procedure and compared the individual mass estimates with other references. Now we apply the total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find OmegaM = 0.30+-0.01 and sigma8 = 0.79+-0.03 (statistical uncertainties, 68% credibility level) using our default analysis strategy combining both, a mass function analysis and the gas mass fraction results. The main sources of biases that we also correct here are (1) the influence of galaxy groups, (2) the hydrostatic mass bias, (3) the extrapolation of the total mass, (4) the theoretical halo mass function and (5) other physical effects. We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, baryonic effects as incorporated by recent hydrodynamical simulations do not result in a significant change in the constraints. The total systematic uncertainties (20%) clearly dominate the statistical uncertainties on cosmological parameters.
Many galaxy clusters host Mpc scale diffuse radio sources called radio halos. Their origin is connected to the processes that lead to the formation of clusters themselves. In order to unveil this connection, statistical studies of radio halos are nec essary. We selected a sample of galaxy clusters with M500>6e14Msun and z=0.08-0.33 from the Planck SZ catalogue. In paper I, we presented the radio and X-ray data analysis that we carried out on these clusters. Here, we study the radio properties of the sample, in connection to the mass and dynamical state of clusters. We used the dynamical information derived from the X-ray data to assess the role of mergers in the origin of radio halos. We studied the distribution of clusters in the radio power-mass diagram and the role of dynamics on the radio luminosity and emissivity of radio halos. We measured the occurrence of radio halos as a function of the cluster mass and we compared it with the expectations of turbulent acceleration models. We found that more than the 90% of radio halos are in merging clusters and that their radio power correlates with the mass of the host clusters. The correlation shows a large dispersion. Interestingly, we showed that cluster dynamics contributes significantly to this dispersion with more disturbed clusters being more radio luminous. Clusters without radio halos are generally relaxed and the upper limits to their diffuse emission lie below the correlation. We showed that the radio emissivity of clusters exhibits an apparent bimodality, with the emissivity of radio halos being at least 5 times larger than the non-emission associated with more relaxed clusters. We found that the fraction of radio halos drops from ~70% in high mass clusters to ~35% in the lower mass systems of the sample and we showed that this result is in good agreement with the expectations from turbulent re-acceleration models.
We investigate the thermodynamic and chemical structure of the intracluster medium (ICM) across a statistical sample of 20 galaxy clusters analysed with the Chandra X-ray satellite. In particular, we focus on the scaling properties of the gas density , metallicity and entropy and the comparison between clusters with and without cool cores (CCs). We find marked differences between the two categories except for the gas metallicity, which declines strongly with radius for all clusters (Z ~ r^{-0.31}), outside ~0.02 r500. The scaling of gas entropy is non-self-similar and we find clear evidence of bimodality in the distribution of logarithmic slopes of the entropy profiles. With only one exception, the steeper sloped entropy profiles are found in CC clusters whereas the flatter slope population are all non-CC clusters. We explore the role of thermal conduction in stabilizing the ICM and conclude that this mechanism alone is sufficient to balance cooling in non-CC clusters. However, CC clusters appear to form a distinct population in which heating from feedback is required in addition to conduction. Under the assumption that non-CC clusters are thermally stabilized by conduction alone, we find the distribution of Spitzer conduction suppression factors, f_c, to be log-normal, with a log (base 10) mean of -1.50+/-0.03 (i.e. f_c=0.032) and log standard deviation 0.39+/-0.02.
Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of th em) different types of non-thermal radio emitting components, viz., haloes, mini-haloes, relics and phoenix within their Intra Cluster Medium (ICM). The radio haloes show steep (alpha = -1.2) and ultra steep (alpha < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.
We present a study of the luminosity and color properties of galaxies selected from a sample of 57 low-redshift Abell clusters. We utilize the non-parametric dwarf-to-giant ratio (DGR) and the blue galaxy fraction (fb) to investigate the clustercentr ic radial-dependent changes in the cluster galaxy population. Composite cluster samples are combined by scaling the counting radius by r200 to minimize radius selection bias. The separation of galaxies into a red and blue population was achieved by selecting galaxies relative to the cluster color-magnitude relation. The DGR of the red and blue galaxies is found to be independent of cluster richness (Bgc), although the DGR is larger for the blue population at all measured radii. A decrease in the DGR for the red and red+blue galaxies is detected in the cluster core region, while the blue galaxy DGR is nearly independent of radius. The fb is found not to correlate with Bgc; however, a steady decline toward the inner-cluster region is observed for the giant galaxies. The dwarf galaxy fb is approximately constant with clustercentric radius except for the inner cluster core region where fb decreases. The clustercentric radial dependence of the DGR and the galaxy blue fraction, indicates that it is unlikely that a simple scenario based on either pure disruption or pure fading/reddening can describe the evolution of infalling dwarf galaxies; both outcomes are produced by the cluster environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا