ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. In that respect, hybrid quantum systems combining circuit QED with ions doped into solids are an attractive platform. There, the ions serve as coherent memory elements and reversible conversion elements of microwave to optical qubits. Among many possible spin-doped solids, erbium ions offer the unique opportunity of a coherent conversion of microwave photons into the telecom C-band at $1.54,mu$m employed for long distance communication. In our work, we perform a time-resolved electron spin resonance study of an Er$^{3+}$:Y$_2$SiO$_5$ spin ensemble at milli-Kelvin temperatures and demonstrate multimode storage and retrieval of up to 16 coherent microwave pulses. The memory efficiency is measured to be 10$^{-4}$ at the coherence time of $T_2=5.6,mu$s.
Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which eit her require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.
We report on hybrid circuit QED experiments with focused ion beam implanted Er$^{3+}$ ions in Y$_2$SiO$_5$ coupled to an array of superconducting lumped element microwave resonators. The Y$_2$SiO$_5$ crystal is divided into several areas with distinc t erbium doping concentrations, each coupled to a separate resonator. The coupling strength is varied from 5 MHz to 18.7 MHz, while the linewidth ranges between 50 MHz and 130 MHz. We confirm the paramagnetic properties of the implanted spin ensemble by evaluating the temperature dependence of the coupling. The efficiency of the implantation process is analyzed and the results are compared to a bulk doped Er:Y$_2$SiO$_5$ sample. We demonstrate the successful integration of these engineered erbium spin ensembles with superconducting circuits.
We present cavity QED experiments with an Er:YSO crystal magnetically coupled to a 3D cylindrical sapphire loaded copper resonator. Such waveguide cavities are promising for the realization of a superconducting quantum processor. Here, we demonstrate the coherent integration of a rare-earth spin ensemble with the 3D architecture. The collective coupling strength of the Er$^{3+}$ spins to the 3D cavity is 21 MHz. The cylindrical sapphire loaded resonator allowed us to explore the anisotropic collective coupling between the rare-earth doped crystal and the cavity. This work shows the potential of spin doped solids in 3D quantum circuits for application as microwave quantum memories as well as for prospective microwave to optical interfaces.
118 - A. Tkalcec , S. Probst , D. Rieger 2014
Quantum memories are integral parts of both quantum computers and quantum communication networks. Naturally, such a memory is embedded into a hybrid quantum architecture, which has to meet the requirements of fast gates, long coherence times and long distance communication. Erbium doped crystals are well suited as a microwave quantum memory for superconducting circuits with additional access to the optical telecom C-band around 1.55 {mu}m. Here, we report on circuit QED experiments with an Er3+:YAlO3 crystal and demonstrate strong coupling to a superconducting lumped element resonator. The low magnetic anisotropy of the host crystal allows for attaining the strong coupling regime at relatively low magnetic fields, which are compatible with superconducting circuits. In addition, Ce3+ impurities were detected in the crystal, which showed strong coupling as well.
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent qubit interconversion are optically active spins magnetically c oupled to a superconducting resonator. We report on a cavity QED experiment with magnetically anisotropic Er3+:Y2SiO5 crystals and demonstrate strong coupling of rare-earth spins to a lumped element resonator. In addition, the electron spin resonance and relaxation dynamics of the erbium spins are detected via direct microwave absorption, without aid of a cavity.
Single crystals of LaFeAsO were successfully grown out of KI flux. Temperature dependent electrical resistivity was measured with current flow along the basal plane, rho_perpend(T), as well as with current flow along the crystallographic c-axis, rho_ parallel(T), the latter one utilizing electron beam lithography and argon ion beam milling. The anisotropy ratio was found to lie between rho_parallel/rho_perpend = 20 - 200. The measurement of rho_perpend(T) was performed with current flow along the tetragonal [1 0 0] direction and along the [1 1 0] direction and revealed a clear in-plane anisotropy already at T leq 175 K. This is significantly above the orthorhombic distortion at T_0 = 147 K and indicates the formation of an electron nematic phase. Magnetic susceptibility and electrical resistivity give evidence for a change of the magnetic structure of the iron atoms from antiferromagnetic to ferromagnetic arrangement along the c-axis at T^ast = 11 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا