ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator

253   0   0.0 ( 0 )
 نشر من قبل Pavel Bushev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent qubit interconversion are optically active spins magnetically coupled to a superconducting resonator. We report on a cavity QED experiment with magnetically anisotropic Er3+:Y2SiO5 crystals and demonstrate strong coupling of rare-earth spins to a lumped element resonator. In addition, the electron spin resonance and relaxation dynamics of the erbium spins are detected via direct microwave absorption, without aid of a cavity.



قيم البحث

اقرأ أيضاً

Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum comm unication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.
We present cavity QED experiments with an Er:YSO crystal magnetically coupled to a 3D cylindrical sapphire loaded copper resonator. Such waveguide cavities are promising for the realization of a superconducting quantum processor. Here, we demonstrate the coherent integration of a rare-earth spin ensemble with the 3D architecture. The collective coupling strength of the Er$^{3+}$ spins to the 3D cavity is 21 MHz. The cylindrical sapphire loaded resonator allowed us to explore the anisotropic collective coupling between the rare-earth doped crystal and the cavity. This work shows the potential of spin doped solids in 3D quantum circuits for application as microwave quantum memories as well as for prospective microwave to optical interfaces.
We demonstrate the strong coupling between an electron spin ensemble and a three-dimensional cavity in a reflection geometry. We also find that an anticrossing in the cavity/spin spectrum can be observed under conditions that the collective coupling strength $g_c$ is smaller than the spin linewidth $gamma_s$ or the cavity linewidth. We identify a ratio of $g_c$ to $gamma_s$ ($g_c/gamma_s >$ 0.64) as a condition to observe a splitting in the cavity frequency. Finally, we confirm that $g_c$ scales with $sqrt{N}$, where $N$ is the number of polarized spins.
Yttrium orthosilicate (Y$_2$SiO$_5$, or YSO) has proved to be a convenient host for rare-earth ions used in demonstrations of microwave quantum memories and optical memories with microwave interfaces, and shows promise for coherent microwave--optical conversion owing to its favourable optical and spin properties. The strong coupling required by such microwave applications could be achieved using superconducting resonators patterned directly on Y$_2$SiO$_5$, and hence we investigate here the use of Y$_2$SiO$_5$ as an alternative to sapphire or silicon substrates for superconducting hybrid device fabrication. A NbN resonator with frequency 6.008 GHz and low power quality factor $Q approx 400000$ was fabricated on a Y$_2$SiO$_5$ substrate doped with isotopically enriched Nd$^{145}$. Measurements of dielectric loss yield a loss-tangent $tandelta = 4 times 10^{-6}$, comparable to sapphire. Electron spin resonance (ESR) measurements performed using the resonator show the characteristic angular dependence expected from the anisotropic Nd$^{145}$ spin, and the coupling strength between resonator and electron spins is in the high cooperativity regime ($C = 30$). These results demonstrate Y$_2$SiO$_5$ as an excellent substrate for low-loss, high-Q microwave resonators, especially in applications for coupling to optically-accessible rare earth spins.
Metamaterial resonant structures made from arrays of superconducting lumped circuit elements can exhibit microwave mode spectra with left-handed dispersion, resulting in a high density of modes in the same frequency range where superconducting qubits are typically operated, as well as a bandgap at lower frequencies that extends down to dc. Using this novel regime for multi-mode circuit quantum electrodynamics, we have performed a series of measurements of such a superconducting metamaterial resonator coupled to a flux-tunable transmon qubit. Through microwave measurements of the metamaterial, we have observed the coupling of the qubit to each of the modes that it passes through. Using a separate readout resonator, we have probed the qubit dispersively and characterized the qubit energy relaxation as a function of frequency, which is strongly affected by the Purcell effect in the presence of the dense mode spectrum. Additionally, we have investigated the ac Stark shift of the qubit as the photon number in the various metamaterial modes is varied. The ability to tailor the dense mode spectrum through the choice of circuit parameters and manipulate the photonic state of the metamaterial through interactions with qubits makes this a promising platform for analog quantum simulation and quantum memories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا