ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the strain-induced coupling between a nitrogen-vacancy impurity and a resonant vibrational mode of a diamond nanoresonator. We show that under near-resonant laser excitation of the electronic states of the impurity, this coupling can m odify the state of the resonator and either cool the resonator close to the vibrational ground state or drive it into a large amplitude coherent state. We derive a semi-classical model to describe both effects and evaluate the stationary state of the resonator mode under various driving conditions. In particular, we find that by exploiting resonant single and multi-phonon transitions between near-degenerate electronic states, the coupling to high-frequency vibrational modes can be significantly enhanced and dominate over the intrinsic mechanical dissipation. Our results show that a single nitrogen-vacancy impurity can provide a versatile tool to manipulate and probe individual phonon modes in nanoscale diamond structures.
We propose and theoretically analyze a new scheme for generating hyper-entangled photon pairs in a system of polaritons in coupled planar microcavities. Starting from a microscopic model, we evaluate the relevant parametric scattering processes and n umerically simulate the phonon-induced noise background under continuous-wave excitation. Our results show that, compared to other polariton entanglement proposals, our scheme enables the generation of photon pairs that are entangled in both path and polarization degrees of freedom, and simultaneously leads to a strong reduction of the photoluminesence noise background. This can significantly improve the fidelity of the entangled photon pairs under realistic experimental conditions.
We theoretically investigate signatures of stimulated emission at the single photon level for a two-level atom interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited, and the steady state regime where the atom is continuously driven with an external pump. The influence of pure dephasing is studied, clearly showing that these effects can be evidenced with state of the art solid state devices. We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one, in three-level one-dimensional atoms.
We study the temporal correlations of the field emitted by an electromagnetic resonator coupled to a mesoscopic number of two-level emitters that are incoherently pumped by a weak external drive. We solve the master equation of the system for increas ing number of emitters and as a function of the cavity quality factor, and we identify three main regimes characterized by well distinguished statistical properties of the emitted radiation. For small cavity decay rate, the emission events are uncorrelated and the number of photons in the emitted field becomes larger than one, resembling the build-up of a laser field inside the cavity. At intermediate decay rates (as compared to the emitter-cavity coupling) and for few emitters, the statistics of the emitted radiation is bunched and strikingly dependent on the parity of the number of emitters. The latter property is related to the cooperativity of the emitters mediated by their coupling to the cavity mode, and its connection with steady state subradiance is discussed. Finally, in the bad cavity regime the typical situation of emission from a collection of individual emitters is recovered. We also analyze how the cooperative behavior evolves as a function of pure dephasing, which allows to recover the case of a classical source made of an ensemble of independent emitters, similar to what is obtained for a very leaky cavity. State-of-art techniques of Q-switch of resonant cavities, allied with the recent capability to tune single emitters in and out of resonance, suggest this system as a versatile source of different quantum states of light.
We investigate theoretically the coupling of a cavity mode to a continuous distribution of emitters. We discuss the influence of the emitters inhomogeneous broadening on the existence and on the coherence properties of the polaritonic peaks. We find that their coherence depends crucially on the shape of the distribution and not only on its width. Under certain conditions the coupling to the cavity protects the polaritonic states from inhomogeneous broadening, resulting in a longer storage time for a quantum memory based on emitters ensembles. When two different ensembles of emitters are coupled to the resonator, they support a peculiar collective dark state, also very attractive for the storage of quantum information.
e study theoretically, the photoluminescence properties of a single quantum dot in a microcavity under incoherent excitation. We propose a microscopic quantum statistical approach providing a Lindblad (thus completely positive) description of pumping and decay mechanisms of the quantum dot and of the cavity mode. Our analytical results show that strong coupling (SC) and linewidths are largely independent on the pumping intensity (until saturation effects come into play), in contrast to previous theoretical findings. We shall show the reliable predicting character of our theoretical framework in the analysis of various recent experiments.
We show theoretically that polariton pairs with a high degree of polarization entanglement can be produced through parametric scattering. We demonstrate that it can emerge in coincidence experiments, even at low excitation densities where the dynamic s is dominated by incoherent photoluminesce. Our analysis is based on a microscopic quantum statistical approach that treats coherent and incoherent processes on an equal footing, thus allowing for a quantitative assessment of the amount of entanglement under realistic experimental conditions. This result puts forward the robustness of pair correlations in solid-state devices, even when noise dominates one-body correlations.
82 - S. Portolan 2007
We present a systematic theory of Coulomb-induced correlation effects in the nonlinear optical processes within the strong-coupling regime. In this paper we shall set a dynamics controlled truncation scheme cite{Axt Stahl} microscopic treatment of no nlinear parametric processes in SMCs including the electromagnetic field quantization. It represents the starting point for the microscopic approach to quantum optics experiments in the strong coupling regime without any assumption on the quantum statistics of electronic excitations (excitons) involved. We exploit a previous technique, used in the semiclassical context, which, once applied to four-wave mixing in quantum wells, allowed to understand a wide range of observed phenomena cite{Sham PRL95}. We end up with dynamical equations for exciton and photon operators which extend the usual semiclassical description of Coulomb interaction effects, in terms of a mean-field term plus a genuine non-instantaneous four-particle correlation, to quantum optical effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا