ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoluminescence from Microcavities Strongly Coupled to Single Quantum Dots

104   0   0.0 ( 0 )
 نشر من قبل Salvatore Savasta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

e study theoretically, the photoluminescence properties of a single quantum dot in a microcavity under incoherent excitation. We propose a microscopic quantum statistical approach providing a Lindblad (thus completely positive) description of pumping and decay mechanisms of the quantum dot and of the cavity mode. Our analytical results show that strong coupling (SC) and linewidths are largely independent on the pumping intensity (until saturation effects come into play), in contrast to previous theoretical findings. We shall show the reliable predicting character of our theoretical framework in the analysis of various recent experiments.

قيم البحث

اقرأ أيضاً

Deterministically integrating semiconductor quantum emitters with plasmonic nano-devices paves the way towards chip-scale integrable, true nanoscale quantum photonics technologies. For this purpose, stable and bright semiconductor emitters are needed , which moreover allow for CMOS-compatibility and optical activity in the telecommunication band. Here, we demonstrate strongly enhanced light-matter coupling of single near-surface ($<10,nm$) InAs quantum dots monolithically integrated into electromagnetic hot-spots of sub-wavelength sized metal nanoantennas. The antenna strongly enhances the emission intensity of single quantum dots by up to $sim16times$, an effect accompanied by an up to $3.4times$ Purcell-enhanced spontaneous emission rate. Moreover, the emission is strongly polarised along the antenna axis with degrees of linear polarisation up to $sim85,%$. The results unambiguously demonstrate the efficient coupling of individual quantum dots to state-of-the-art nanoantennas. Our work provides new perspectives for the realisation of quantum plasmonic sensors, step-changing photovoltaic devices, bright and ultrafast quantum light sources and efficent nano-lasers.
The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck-Condon blockade. Here, we investigate this effect in a quantum dot driven by time-periodic gate voltages and tunneling amplitudes using nonequilibrium Greens functions and a Floquet expansion. Building on previous results showing that driving can lift the Franck-Condon blockade, we investigate driving protocols which can be used to pump charge across the quantum dot. In particular, we show that due to the strongly coupled nature of the system, the pump current at resonance is an exponential function of the drive strength.
283 - A. Ishii , X. He , N. F. Hartmann 2018
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here we show that integration of dopant states in carbon nanotubes and si licon microcavities can provide bright and high-purity single photon emitters on silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe enhancement of emission from the dopant states by a factor of $sim$100, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, where $sim$30% decrease of emission lifetime is observed. Statistics of photons emitted from the cavity-coupled dopant states are investigated by photon correlation measurements, and high-purity single photon generation is observed. Excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept low even when the excitation power increases, while single photon emission rate can be increased up to $sim 1.7 times 10^7$ Hz.
We demonstrate room temperature visible wavelength photoluminescence from In0.5Ga0.5As quantum dots embedded in a GaP membrane. Time-resolved above band photoluminescence measurements of quantum dot emission show a biexpontential decay with lifetimes of ~200 ps. We fabricate photonic crystal cavities which provide enhanced outcoupling of quantum dot emission, allowing the observation of narrow lines indicative of single quantum dot emission. This materials system is compatible with monolithic integration on Si, and is promising for high efficiency detection of single quantum dot emission as well as optoelectronic devices emitting at visible wavelengths.
We compare three different notions of concurrence to measure the polarization entanglement of two-photon states generated by the biexciton cascade in a quantum dot embedded in a microcavity. We focus on the often-discussed situation of a dot with fin ite biexciton binding energy in a cavity tuned to the two-photon resonance. Apart from the time-dependent concurrence, which can be assigned to the two-photon density matrix at any point in time, we study single- and double-time integrated concurrences commonly used in the literature that are based on different quantum state reconstruction schemes. We argue that the single-time integrated concurrence can be thought of as the concurrence of photons simultaneously emitted from the cavity without resolving the common emission time, while the more widely studied double-time integrated concurrence refers to photons that are neither filtered with respect to the emission time of the first photon nor with respect to the delay time between the two emitted photons. Analytic and numerical calculations reveal that the single-time integrated concurrence indeed agrees well with the typical value of the time-dependent concurrence at long times, even in the presence of phonons. Thus, the more easily measurable single-time integrated concurrence gives access to the physical information represented by the time-dependent concurrence. However, the double-time integrated concurrence shows a different behavior with respect to changes in the exciton fine structure splitting and even displays a completely different trend when the ratio between the cavity loss rate and the fine structure splitting is varied while keeping their product constant. This implies the non-equivalence of the physical information contained in the time-dependent and single-time integrated concurrence on the one hand and the double-time integrated concurrence on the other hand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا