ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - J.-Q. Yan , S. Nandi , B. Saparov 2014
La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron dif fraction. La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at T$_s$,=,125,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the emph{a} direction with an ordered moment of 0.7(1),$mu_{textup{B}}$ at emph{T},=,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other emph{A}Fe$_{2}$As$_{2}$ (emph{A},=,Ca, Sr, Ba) compounds. La$_{0.5-x}$Na$_{0.5+x}$Fe$_2$As$_2$ provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.
65 - S. Nandi , W. T. Jin , Y. Xiao 2014
The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron scattering. We conclude that the Eu2+ moments are aligned along the c direction below T_C = 19.0(1) K with an ord ered moment of 6.6(2) mu_B in the superconducting state. An impurity phase similar to the underdoped phase exists within the bulk sample which orders antiferromagnetically below T_N = 17.0(2) K. We found no indication of iron magnetic order, nor any incommensurate magnetic order of the Eu2+ moments in the sample.
The collider phenomenology of models with Universal Extra Dimensions (UED) is surprisingly similar to that of supersymmetric (SUSY) scenarios. For each level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic (bosonic) analog in SUSY and thus UED scenarios are often known as bosonic supersymmetry. The minimal version of UED (mUED) gives rise to a quasi-degenerate particle spectrum at each KK-level and thus, can not explain the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of the Large Hadron Collider (LHC) experiment. However, in the non-minimal version of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be easily explained via the suitable choice of boundary localized kinetic (BLK) terms for higher dimensional fermions and gauge bosons. BLK terms remove the degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks and gluons at the LHC gives rise to hard jets, leptons and large missing energy in the final state. These final states are studied in details by the ATLAS and CMS collaborations in the context of SUSY scenarios. We find that the absence of any significant deviation of the data from the Standard Model (SM) prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and gluons.
69 - S. Nandi , W. T. Jin , Y. Xiao 2014
The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.15 has been determined using element specific x-ray resonant magnetic scattering. Combining magnetic, thermodynamic and scattering measurements, we co nclude that the long range ferromagnetic order of the Eu2+ moments aligned primarily along the c axis coexists with the bulk superconductivity at zero field. At an applied magnetic field >= 0.6 T, superconductivity still coexists with the ferromagnetic Eu2+ moments which are polarized along the field direction. We propose a spontaneous vortex state for the coexistence of superconductivity and ferromagnetism in EuFe2(As0.85P0.15)2.
65 - W. T. Jin , S. Nandi , Y. Xiao 2013
The magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 is unambiguously determined by single-crystal neutron diffraction. A long-range ferromagnetic order of the Eu2+ moments along the c-direction is revealed below the magnetic phase transiti on temperature Tc = 17 K. In addition, the antiferromagnetism of the Fe2+ moments still survives and the tetragonal-to-orthorhombic structural phase transition is also observed, although the transition temperatures of the Fe-spin density wave (SDW) order and the structural phase transition are significantly suppressed to Tn = 70 K and Ts = 90 K, respectively, compared to the parent compound EuFe2As2.We present the microscopic evidences for the coexistence of the Eu-ferromagnetism (FM) and the Fe-SDW in the superconducting crystal. The superconductivity (SC) competes with the Fe-SDW in Eu(Fe0.82Co0.18)2As2.Moreover, the comparison between Eu(Fe1-xCox)2As2 and Ba(Fe1-xCox)2As2 indicates a considerable influence of the rare-earth element Eu on the magnetism of the Fe sublattice.
75 - S. Nandi , Y. Xiao , Y. Su 2013
We have used polarized and unpolarized neutron diffraction to determine the spatial distribution of the magnetization density induced by a magnetic field of 9 T in the tetragonal phase of K0.8Fe1.6Se2. The maximum entropy reconstruction shows clearly that most of the magnetization is confined to the region around the iron atoms whereas there is no significant magnetization associated with either Se or K atoms. The distribution of magnetization around the Fe atom is slightly nonspherical with a shape which is extended along the [0 0 1] direction in the projection. Multipolar refinement results show that the electrons which give rise to the paramagnetic susceptibility are confined to the Fe atoms and their distribution suggests that they occupy 3d t2g-type orbitals with around 66% in those of xz/yz symmetry. Detail modeling of the magnetic form factor indicates the presence of an orbital moment to the total paramagnetic moment of Fe2+
59 - Y. Xiao , S. Nandi , Y. Su 2013
Neutron scattering experiments were performed to investigate magnetic order and magnetic excitations in ternary iron chalcogenide K2Fe4Se5. The formation of a superlattice structure below 580 K together with the decoupling between the Fe-vacancy orde r-disorder transition and the antiferromagnetic order transition appears to be a common feature in the A2Fe4Se5 family. The study of spin dynamics of K2Fe4Se5 reveals two distinct energy gaps at the magnetic Brillouin zone center, which indicates the presence of magnetic anisotropy and the decrease of local symmetry due to electronic and orbital anisotropy. The low-energy spin wave excitations of K2Fe4Se5 can be properly described by linear spin wave theory within a Heisenberg model. Compared to iron pnictides, K2Fe4Se5 exhibits a more two-dimensional magnetism as characterized by large differences not only between out-of-plane and in-plane spin wave velocities, but also between out-of-plane and in-plane exchange interactions.
We consider the pair production of color triplet spin-3/2 quarks and their subsequent decays at the LHC. This particle, if produced, will most likely decay into top quark and gluon, bottom quark and gluon, or a light quark jet and gluon, depending on the quantum number of the spin-3/2 particle. This would lead to signals with ttbar+jj, bbbar+jj, or 4j in the final states. We present a detailed analysis of the signals and backgrounds at sqrt{s}= 7, 8 and 14 TeV and show the reach for such particles by solving for observable mass values for the spin-3/2 quarks through its decay products.
New physics at the TeV scale is highly anticipated at the LHC. New particles with color, if within the LHC energy reach, will be copiously produced. One such particle is a diquark, having the quantum numbers of two quarks, and can be a scalar or a ve ctor. It will decay to two light quarks, or two top quarks, or a top and a light quark, (up or down type depending on the quantum number of the produced diquark). If singly produced, it can be looked for as a dijet resonance, or as giving extra contribution to the single top production or tt production. In this work, we consider a color sextet vector diquark having the quantum number of (ud) type, its resonance production, and the subsequent decay to tb, giving rise to excess contribution to the single top production. Even though the diquark mass is large, its strong resonance production dominate the weak production of tb for a wide range of the diquark mass. Also its subsequent decay to tb produce a very hard b-jet compared to the usual electroweak production. In addition, the missing energy in the final state event is much larger from the massive diquark decays. Thus, with suitable cuts, the final state with b, bar{b} and a charged lepton together with large missing energy stands out compared to the Standard Model background. We make a detailed study of both the signal and the background. We find that such a diquark is accessible at the 7 TeV LHC upto a mass of about 3.3 TeV with the luminosity 1 fb^{-1}, while the reach goes up to about 4.3 TeV with a luminosity of 10 fb^{-1}.
84 - A. Pirya 2012
We present the results of multifrequency observations of two asymmetric, Mpc-scale radio sources with the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). The radio luminosity of these two sources, J1211+743 and J1918+742, are i n the Fanaroff-Riley class II (FRII) range, but have diffuse radio components on one side of the galaxy while the opposite component appears edge-brightened with a prominent hot-spot. Although the absence of a hot-spot is reminiscent of FRI radio galaxies, suggesting a hybrid morphology, the radio jet facing the diffuse lobe in J1211+743 is similar to those in FRII radio sources, and it is important to consider these aspects as well while classifying these sources in the FR scheme. The observed asymmetries in these Mpc-scale sources are likely to be largely intrinsic rather than being due to the effects of orientation and relativistic motion. The formation of a diffuse lobe facing the radio jet in J1211+743 is possibly due to the jet being highly dissipative. The low-frequency spectral indices of the lobes are in the range of approximately -0.8 to -1, while at the outer edges these vary from approximately -0.65 to -1.05 suggesting steep injection spectral indices, which need to be examined further from observations at even lower frequencies by telescopes such as the LOw Frequency ARray (LOFAR).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا