ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for spin-3/2 quarks at the Large Hadron Collider

121   0   0.0 ( 0 )
 نشر من قبل Durmus Karabacak
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the pair production of color triplet spin-3/2 quarks and their subsequent decays at the LHC. This particle, if produced, will most likely decay into top quark and gluon, bottom quark and gluon, or a light quark jet and gluon, depending on the quantum number of the spin-3/2 particle. This would lead to signals with ttbar+jj, bbbar+jj, or 4j in the final states. We present a detailed analysis of the signals and backgrounds at sqrt{s}= 7, 8 and 14 TeV and show the reach for such particles by solving for observable mass values for the spin-3/2 quarks through its decay products.



قيم البحث

اقرأ أيضاً

140 - U. Baur 2007
Many new physics models predict resonances with masses in the TeV range which decay into a pair of top quarks. With its large cross section, tbar t production at the Large Hadron Collider (LHC) offers an excellent opportunity to search for such parti cles. The identification of very energetic top quarks is crucial in such an analysis. We consider in detail the tbar ttoell^pm u bbar bqbar q (ell=e, mu) final state for high p_T top quarks. In this phase space region, two or more of the final state quarks can merge into a single jet due to the large Lorentz boost of the parent top quark. As a result, a large fraction of tbar ttoell^pm u bbar bqbar q events with an invariant mass in the TeV region contains less than four observable jets. Requiring one or two tagged b-quarks, we calculate the W+jets, Wb+jets, Wbbar b+jets, Wbt, and single top plus jets backgrounds for these final states, and identify cuts which help to suppress them. In particular, we discuss whether a cut on the jet invariant mass may be useful in reducing the background in the ell u+2 jets channel. We also investigate how next-to-leading order QCD corrections affect high p_T top quark production at the LHC. We find that the ell u+2 jets and ell u+3 jets final states with one or two $b$-tags will significantly improve the chances for discovering new heavy particles in the tbar t channel at the LHC.
Vector-Like Quarks (VLQs) are predicted by several theoretical scenarios of new physics and, having colour quantum numbers, can copiously be produced at the Large Hadron Collider (LHC), so long that their mass is in the testable kinematic regime of s uch a machine. While it would be convenient to assume that such objects are narrow and can be treated in the so-called Narrow Width Approximation (NWA), this is not always possible, owing to the fact that couplings and particle content of such new physics scenarios are not generally constrained, so that a large value of the former and/or a large variety of VLQ decay channels into the latter can contribute to generate a large decay width for such extra quarks. We have addressed here the issue of how best to tackle in LHC analysis the presence of large (and model-dependent) interference effects between different VLQ production and decay channels as well as between these and the corresponding irreducible background. We have confined ourselves to the case of single production of VLQs, which is rapidly becoming a channel of choice in experimental searches owing to the ever increasing limits on their mass, in turn depleting the yield of the historically well-established double production channel. Indeed, this poses a further challenge, as the former is model-dependent while the latter is essentially not. Despite these conditions, we show here that an efficient approach is possible, which retains to a large extent a degree of model independence in phenomenological studies of such VLQ dynamics at the LHC.
326 - Joshua Sayre 2011
We investigate the prospects for the discovery of massive color-octet vector bosons at the CERN Large Hadron Collider with $sqrt{s} = 14$ TeV. A phenomenological Lagrangian is adopted to evaluate the cross section of a pair of colored vector bosons ( colorons, $tilde{rho}$) decaying into four colored scalar resonances (hyper-pions, $tilde{pi}$), which then decay into eight gluons. We include the dominant physics background from the production of $8g,7g1q, 6g2q$, and $5g3q$, and determine the masses of $tilde{pi}$ and $tilde{rho}$ where discovery is possible. For example, we find that a 5$sigma$ signal can be established for $M_{tilde{pi}} alt 495$ GeV ($M_{tilde{rho}} alt 1650$ GeV). More generally we give the reach of this process for a selection of possible cuts and integrated luminosities.
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop producti on modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.
The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, t he origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D-brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا