ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the colour-magnitude relation of metal-poor globular clusters, the blue tilt, in the Hydra and Centaurus galaxy clusters and constrain the primordial conditions for star cluster self-enrichment. We analyse U,I photometry for about 2500 globular clusters in the central regions of Hydra and Centaurus, based on FORS1@VLT data. We convert the measured colour-magnitude relations into mass-metallicity space and obtain a scaling of Z propto M^{0.27 pm 0.05} for Centaurus GCs and Z propto M^{0.40 pm 0.06} for Hydra GCs, consistent with results in other environments. We find that the GC mass-metallicity relation already sets in at present-day masses of a few 10^5 solar masses and is well established in the luminosity range of massive MW clusters like omega Centauri. We compare the mass-metallicity relation with predictions from the star cluster self-enrichment model by Bailin & Harris (2009). For this we include effects of dynamical and stellar evolution and a physically well motivated primordial mass-radius scaling. The self-enrichment model reproduces the observed relations well for average primordial half-light radii r_h ~ 1-1.5 pc, star formation efficiencies f_* ~ 0.3-0.4, and pre-enrichment levels of [Fe/H] ~ -1.7 dex. Within the self-enrichment scenario, the observed blue tilt implies a correlation between GC mass and width of the stellar metallicity distribution. We find that this implied correlation matches the trend of width with GC mass measured in Galactic GCs, including extreme cases like omega Cen and M54. We conclude that 1. A primordial star cluster mass-radius relation provides a significant improvement to the self-enrichment model fits. 2. Broadenend metallicity distributions as found in some massive MW globular clusters may have arisen naturally from self-enrichment processes, without the need of a dwarf galaxy progenitor.
Fossil groups are considered the end product in a galaxy groups evolution -- a massive central galaxy that dominates the luminosity budget of the group, as the outcome of efficient merging between intermediate-luminosity members. Little is however kn own about the faint satellite systems of fossil groups. Here we present a SUBARU/Suprime-Cam wide-field, deep imaging study in the B- and R-band of the nearest fossil group NGC 6482 (M_{tot}sim4times10^{12}M_{sun}), covering the virial radius out to 310 kpc. We perform detailed completeness estimations and select group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to M_R -10.5 mag is detected, making this study the deepest of a fossil group up to now. We investigate the photometric scaling relations, the colour-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The colour-magnitude relation is comparable to that of nearby galaxy clusters, and exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope alpha=-1.32pm0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites.
296 - I. Misgeld , S. Mieske , M. Hilker 2011
We performed a large spectroscopic survey of compact, unresolved objects in the core of the Hydra I galaxy cluster (Abell 1060), with the aim of identifying ultra-compact dwarf galaxies (UCDs), and investigating the properties of the globular cluster (GC) system around the central cD galaxy NGC 3311. We obtained VIMOS medium resolution spectra of about 1200 candidate objects with apparent magnitudes 18.5 < V < 24.0 mag, covering both the bright end of the GC luminosity function and the luminosity range of all known UCDs. By means of spectroscopic redshift measurements, we identified 118 cluster members, from which 52 are brighter than M_V = -11.0 mag, and can therefore be termed UCDs. The brightest UCD in our sample has an absolute magnitude of M_V = -13.4 mag (corresponding to a mass of > 5 x 10^7 M_sun) and a half-light radius of 25 pc. This places it among the brightest and most massive UCDs ever discovered. Most of the GCs/UCDs are both spatially and dynamically associated to the central cD galaxy. The overall velocity dispersion of the GCs/UCDs is comparable to what is found for the cluster galaxies. However, when splitting the sample into a bright and a faint part, we observe a lower velocity dispersion for the bright UCDs/GCs than for the fainter objects. At a dividing magnitude of M_V = -10.75 mag, the dispersions differ by more than 200 km/s, and up to 300 km/s for objects within 5 arcmin around NGC 3311. We interpret these results in the context of different UCD formation channels, and conclude that interaction driven formation seems to play an important role in the centre of Hydra I.
39 - A.H.W. Kuepper 2010
We investigate the dynamical status of the low-mass globular cluster Palomar 13 by means of N-body computations to test whether its unusually high mass-to-light ratio of about 40 and its peculiarly shallow surface density profile can be caused by tid al shocking. Alternatively, we test - by varying the assumed proper motion - if the orbital phase of Palomar 13 within its orbit about the Milky Way can influence its appearance and thus may be the origin of these peculiarities, as has been suggested by Kuepper et al. (2010). We find that, of these two scenarios, only the latter can explain the observed mass-to-light ratio and surface density profile. We note, however, that the particular orbit that best reproduces those observed parameters has a proper motion inconsistent with the available literature value. We discuss this discrepancy and suggest that it may be caused by an underestimation of the observational uncertainties in the proper motion determination. We demonstrate that Palomar 13 is most likely near apogalacticon, which makes the cluster appear supervirial and blown-up due to orbital compression of its tidal debris. Since the satellites of the Milky Way are on average closer to apo- than perigalacticon, their internal dynamics may be influenced by the same effect, and we advocate that this needs to be taken into account when interpreting their kinematical data. Moreover, we briefly discuss the influence of a possible binary population on such measurements.
Besides giant elliptical galaxies, a number of low-mass stellar systems inhabit the cores of galaxy clusters, such as dwarf elliptical galaxies (dEs/dSphs), ultra-compact dwarf galaxies (UCDs), and globular clusters. The detailed morphological examin ation of faint dwarf galaxies has, until recently, been limited to the Local Group (LG) and the two very nearby galaxy clusters Virgo and Fornax. Here, we compare the structural parameters of a large number of dEs/dSphs in the more distant clusters Hydra I and Centaurus to other dynamically hot stellar systems.
119 - C. Da Rocha 2010
The formation of ultra-compact dwarf galaxies (UCDs) is believed to be interaction driven, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in intermediate state of evolution may be expected. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups. For that, 2 groups in different evolutionary stages, HCG 22 and HCG 90, were targeted with VLT/FORS2/MXU. We detect 16 and 5 objects belonging to HCG 22 and HCG 90, respectively, covering the magnitude range -10.0 > M_R > -11.5 mag. Their colours are consistent with old ages covering a broad range in metallicities. Photometric mass estimates put 4 objects in HCG 90 and 9 in HCG 22 in the mass range of UCDs (>2x10^6 M_Sun) for an assumed age of 12 Gyr. These UCDs are on average 2-3 times larger than typical Galactic GCs, covering a range of 2 >~ r_h >~ 21 pc. The UCDs in HCG 22 are more concentrated around the central galaxy than in HCG 90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub- to super-solar. The spectra of 3 UCDs show tentative evidence for intermediate age stellar populations. We calculate the specific frequency (S_N) of UCDs for both groups, finding that HCG 22 has about three times higher S_N than HCG 90. The ensemble properties of the detected UCDs supports 2 co-existing formation channels: a star cluster origin and an origin as tidally stripped dwarf nuclei. Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group with their host galaxies.[abridged]
171 - S. Mieske , A. Jordan , P. Cote 2010
We investigate the color-magnitude relation for globular clusters (GCs) -- the so-called blue tilt -- detected in the ACS Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of gamm a_z=d(g-z)/dz=-0.0257 +- 0.0050 for the full GC sample of the Fornax Cluster Survey (~5800 GCs). This is slightly shallower than the value gamma_z=-0.0459 +- 0.0048 found for the Virgo Cluster Survey GC sample (~11100 GCs). The slope for the merged Fornax and Virgo datasets (~16900 GCs) is gamma_z=-0.0293 +- 0.0085, corresponding to a mass-metallicity relation of Z ~ M^0.43. We find that the blue tilt sets in at GC masses in excess of M ~ 2*10^5 M_sun. The tilt is stronger for GCs belonging to high-mass galaxies (M_* > 5 * 10^10 M_sun) than for those in low-mass galaxies (M_* < 5 * 10^10 M_sun). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass-metallicity relations Z_GC ~ M_GC^(0.3-0.7) which vary as a function of host galaxy mass/luminosity. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the proto-cluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the CMDs defined by the GC systems associated with galaxies of similar mass and morphological type pose a challenge to any single mechanism that seeks to explain the blue tilt. We therefore suggest that the merger/accretion histories of individual galaxies have played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems.
215 - S. Mieske , M. Hilker , I. Misgeld 2009
We recently initiated a search for ultra-compact dwarf galaxies (UCDs) in the Centaurus galaxy cluster (Mieske et al. 2007), resulting in the discovery of 27 compact objects with -12.2<M_V<-10.9 mag. Our overall survey completeness was 15-20% within 120 kpc projected clustercentric distance. In order to better constrain the luminosity distribution of the brightest UCDs in Centaurus, we continue our search by substantially improving our survey completeness specifically in the regime M_V<-12 mag (V_0<21.3 mag). Using VIMOS at the VLT, we obtain low-resolution spectra of 400 compact objects with 19.3<V_0<21.3 mag (-14<M_V<-12 mag at the Centaurus distance) in the central 25 of the Centaurus cluster, which corresponds to a projected radius of ~150 kpc. Our survey yields complete area coverage within ~120 kpc. For 94% of the sources included in the masks we successfully measure a redshift. Due to incompleteness in the slit assignment, our final completeness in the area surveyed is 52%. Among our targets we find three new UCDs in the magnitude range -12.2<M_V<-12 mag, hence at the faint limit of our survey. One of them is covered by archival HST WFPC2 imaging, yielding a size estimate of r_h <= 8-9 pc. At 95% confidence we can reject the hypothesis that in the area surveyed there are more than 2 massive UCDs with M_V<-12.2 mag and r_eff <=70 pc. Our survey hence confirms the extreme rareness of massive UCDs. We find that the radial distributions of Centaurus and Fornax UCDs with respect to their host clusters centers agree within the 2 sigma level.
424 - I. Misgeld , M. Hilker , S. Mieske 2009
We present a photometric study of the early-type dwarf galaxy population of the Centaurus cluster, aiming at investigating the galaxy luminosity function (LF) and galaxy scaling relations down to the regime of galaxies with M_V~-10 mag. On deep VLT/F ORS1 V- and I-band images of the central part of the cluster, we identify cluster dwarf-galaxy candidates using both morphological and surface brightness selection criteria. Photometric and structural parameters of the candidates are derived from analysis of their surface brightness profiles. Fundamental scaling relations, such as the colour-magnitude and the magnitude-surface brightness relation, are used to distinguish the cluster from the background. We find a flat LF with a slope of alpha = -1.14 pm 0.12 for M_V>-14 mag, when fitting a power law to the completeness-corrected galaxy number counts. When plotting the central surface brightness of a Sersic model vs. the galaxy magnitude, we find a continuous relation for magnitudes -20<M_V<-10 mag, with only the brightest core galaxies deviating from this relation, in agreement with previous studies of other clusters. In a size-luminosity diagram of early-type galaxies from a range of environments, we observe that R_eff slowly decreases with decreasing luminosity for -21<M_V<-13 mag and decreases more rapidly at fainter magnitudes. This trend continues to the ultra-faint Local Group dwarf galaxies (M_V~-4 mag). The continuous central surface brightness vs. absolute magnitude relation and the smooth relation in the size-luminosity diagram over a wide range of magnitudes are consistent with the interpretation of dwarf galaxies and more massive elliptical galaxies being one family of objects with gradually changing structural properties. The most massive core galaxies and the rare cE galaxies are the only exceptions.
Various studies have established that the dynamical M/L ratios of ultra-compact dwarf galaxies (UCDs) tend to be at the limit or beyond the range explicable by standard stellar populations with canonical IMF. We discuss how IMF variations may account for these high M/L ratios and how observational approaches may in the future allow to discriminate between those possibilities. We also briefly discuss the possibility of dark matter in UCDs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا