ترغب بنشر مسار تعليمي؟ اضغط هنا

A large population of ultra-compact dwarf galaxies in the Hydra I cluster

439   0   0.0 ( 0 )
 نشر من قبل Ingo Misgeld
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a large spectroscopic survey of compact, unresolved objects in the core of the Hydra I galaxy cluster (Abell 1060), with the aim of identifying ultra-compact dwarf galaxies (UCDs), and investigating the properties of the globular cluster (GC) system around the central cD galaxy NGC 3311. We obtained VIMOS medium resolution spectra of about 1200 candidate objects with apparent magnitudes 18.5 < V < 24.0 mag, covering both the bright end of the GC luminosity function and the luminosity range of all known UCDs. By means of spectroscopic redshift measurements, we identified 118 cluster members, from which 52 are brighter than M_V = -11.0 mag, and can therefore be termed UCDs. The brightest UCD in our sample has an absolute magnitude of M_V = -13.4 mag (corresponding to a mass of > 5 x 10^7 M_sun) and a half-light radius of 25 pc. This places it among the brightest and most massive UCDs ever discovered. Most of the GCs/UCDs are both spatially and dynamically associated to the central cD galaxy. The overall velocity dispersion of the GCs/UCDs is comparable to what is found for the cluster galaxies. However, when splitting the sample into a bright and a faint part, we observe a lower velocity dispersion for the bright UCDs/GCs than for the fainter objects. At a dividing magnitude of M_V = -10.75 mag, the dispersions differ by more than 200 km/s, and up to 300 km/s for objects within 5 arcmin around NGC 3311. We interpret these results in the context of different UCD formation channels, and conclude that interaction driven formation seems to play an important role in the centre of Hydra I.



قيم البحث

اقرأ أيضاً

We present preliminary results of the search for Ultra-compact dwarf galaxies in the central region of the Antlia cluster. This new kind of stellar system has brightness, mass and size between those observed in globular clusters and early-type dwarf galaxies, but their origin is not well understood yet.
306 - I. Misgeld , S. Mieske , M. Hilker 2008
We analyse the properties of the early-type dwarf galaxy population in the Hydra I cluster. We investigate the galaxy luminosity function (LF), the colour-magnitude relation (CMR), and the magnitude-surface brightness relation down to M_V~-10 mag. An other goal of this study is to find candidates for ultra-compact dwarf galaxies (UCDs). Two spectroscopic surveys performed with Magellan I/LDSS2 and VLT/VIMOS, as well as deep VLT/FORS1 images in V and I bands were examined. We identify cluster members by radial velocity measurements and select other cluster galaxy candidates by their morphology. One possible UCD candidate with M_V=-13.26 mag is found. Our sample of 100 morphologically selected dwarf galaxies defines a CMR that extends the CMR of the giant cluster galaxies to the magnitude limit of our survey (M_V~-10 mag). It matches the relations found for the Local Group and the Fornax cluster dwarfs almost perfectly. The Hydra I dwarfs also follow a magnitude-surface brightness relation similar to that of the LG dwarfs. Moreover, we observe a continuous relation for dwarf galaxies and giant early-type galaxies when plotting the central surface brightness mu_0 of a Sersic model vs. the galaxy magnitude. The effective radius is found to be largely independent of the luminosity for M_V>-18 mag, being R_e~0.8 kpc. We derive a very flat faint-end slope of the LF (alpha = -1.13 pm 0.04) from fitting a Schechter function, whereas fitting a power law for M_V>-14 mag gives alpha = -1.40 pm 0.18. Our findings suggest that early-type dwarf and giant galaxies are the same class of objects. The similarity of the dwarf galaxy scaling relations to other environments implies that internal processes could be more important for their global photometric properties than external influences. (abridged)
By utilising the large multi-plexing advantage of the 2dF spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5<Bj<19.7, regardless of morpholo gy, in an area towards the centre of the Fornax Cluster of galaxies. Among the unresolved or marginally resolved targets we have found five objects which are actually at the redshift of the Fornax Cluster, i.e. they are extremely compact dwarf galaxies or extremely large star clusters. All five have absorption line spectra. With intrinsic sizes less than 1.1 arc second HWHM (corresponding to approximately 100 pc at the distance of the cluster), they are more compact and significantly less luminous than other known compact dwarf galaxies, yet much brighter than any globular cluster. In this letter we present new ground based optical observations of these enigmatic objects. In addition to having extremely high central surface brightnesses, these objects show no evidence of any surrounding low surface brightness envelopes down to much fainter limits than is the case for, e.g., nucleated dwarf ellipticals. Thus, if they are not merely the stripped remains of some other type of galaxy, then they appear to have properties unlike any previously known type of stellar system.
We aim at quantifying the specific frequency of UCDs in a range of environments and at relating this to the frequency of globular clusters (GCs) and potential progenitor dwarf galaxies. Are the frequencies of UCDs consistent with being the bright tai l of the GC luminosity function (GCLF)? We propose a definition for the specific frequency of UCDs, S_{N,UCD}=N_{UCD}*10^{0.4*(M_{V,host}-M_{V,0})}*c_{w}. The parameter M_{V,0} is the zeropoint of the definition, chosen such that the specific frequency of UCDs is the same as those of globular clusters, S_{N,GC}, if UCDs follow a simple extrapolation of the GCLF. The parameter c_{w} is a correction term for the GCLF width sigma. We apply our definition of S_{N,UCD} to results of spectroscopic UCD searches in the Fornax, Hydra and Centaurus galaxy clusters, two Hickson Compact Groups, and the Local Group. This includes a large database of 180 confirmed UCDs in Fornax. We find that the specific frequencies derived for UCDs match those of GCs very well, to within 10-50%. The ratio {S_{N,UCD}}/{S_{N,GC}} is 1.00 +- 0.44 for the four environments Fornax, Hydra, Centaurus, and Local Group, which have S_{N,GC} values. This good match also holds for individual giant galaxies in Fornax and in the Fornax intracluster-space. The error ranges of the derived UCD specific frequencies in the various environments then imply that not more than 50% of UCDs were formed from dwarf galaxies. We show that such a scenario would require >90% of primordial dwarfs in galaxy cluster centers (<100 kpc) to have been stripped of their stars. We conclude that the number counts of UCDs are fully consistent with them being the bright tail of the GC population. From a statistical point of view there is no need to invoke an additional formation channel.
In this paper we report on the discovery of 27 low-surface brightness galaxies, of which 12 are candidate ultra-diffuse galaxy (UDG) in the Hydra I cluster, based on deep observations taken as part of the VST Early-type Galaxy Survey (VEGAS). This fi rst sample of UDG candidates in the Hydra I cluster represents an important step in our project that aims to enlarge the number of confirmed UDGs and, through study of statistically relevant samples, constrain the nature and formation of UDGs. This study presents the main properties of this class of galaxies in the Hydra I cluster. For all UDGs, we analyse the light and colour distribution, and provide a census of the globular cluster (GC) systems around them. Given the limitations of a reliable GC selection based on two relatively close optical bands only, we find that half of the UDG candidates have a total GC population consistent with zero. Of the other half, two galaxies have a total population larger than zero at 2$sigma$ level. We estimate the stellar mass, the total number of GCs and the GC specific frequency ($S_N$). Most of the candidates span a range of stellar masses of $10^7-10^8$~M$_{odot}$. Based on the GC population of these newly discovered UDGs, we conclude that most of these galaxies have a standard or low dark matter content, with a halo mass of $leq 10^{10}$~M$_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا