ترغب بنشر مسار تعليمي؟ اضغط هنا

The Curious Case of Palomar 13: The Influence of the Orbital Phase on the Appearance of Galactic Satellites

40   0   0.0 ( 0 )
 نشر من قبل Andreas K\\\"upper
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.H.W. Kuepper




اسأل ChatGPT حول البحث

We investigate the dynamical status of the low-mass globular cluster Palomar 13 by means of N-body computations to test whether its unusually high mass-to-light ratio of about 40 and its peculiarly shallow surface density profile can be caused by tidal shocking. Alternatively, we test - by varying the assumed proper motion - if the orbital phase of Palomar 13 within its orbit about the Milky Way can influence its appearance and thus may be the origin of these peculiarities, as has been suggested by Kuepper et al. (2010). We find that, of these two scenarios, only the latter can explain the observed mass-to-light ratio and surface density profile. We note, however, that the particular orbit that best reproduces those observed parameters has a proper motion inconsistent with the available literature value. We discuss this discrepancy and suggest that it may be caused by an underestimation of the observational uncertainties in the proper motion determination. We demonstrate that Palomar 13 is most likely near apogalacticon, which makes the cluster appear supervirial and blown-up due to orbital compression of its tidal debris. Since the satellites of the Milky Way are on average closer to apo- than perigalacticon, their internal dynamics may be influenced by the same effect, and we advocate that this needs to be taken into account when interpreting their kinematical data. Moreover, we briefly discuss the influence of a possible binary population on such measurements.

قيم البحث

اقرأ أيضاً

In the modern search for life elsewhere in the Universe, we are broadly looking for the following: the planets similar to Earth - physical indicators of habitability, and the manifestation of life - the biological signatures. A biosignature is a meas ured parameter that has a high probability of being caused by the living organisms, either atmospheric gas species or some surface features. Therefore, the focus of a search is on a product or phenomena produced by the living systems, mostly by microorganisms as these are the most abundant on our planet like, say, methane. However, we may need to distinguish the terms `biosignature and `bioindicator. A biosignature is what living organisms produce - a bioproduct, while a bioindicator may be anything necessary for life as we know it, such as water or a rocky planet. Oxygen in this case is a double biomarker; first, it is a byproduct of oxygenic photosynthesis and, second, it is a signature of a complex life, because complex highly organized life requires high levels of oxygen. It is possible that there are other such bioindicators. For example, in the atmospheric compositions of terrestrial planets in our Solar System (including Titan), argon is one of the major constituents, moreover it was recently acknowledged to be a `biologically active gas, exhibiting organprotective and neuroprotective properties, especially under hypoxic conditions. Here we propose that argon in the atmosphere of a rocky planet is a bioindicator of a highly organized life, provided that the planet is already deemed potentially habitable: with water, atmosphere, and of a certain age allowing for the complex life to evolve. We also delineate its possible detection methods.
The discovery of thousands of planetary systems by Kepler has demonstrated that planets are ubiquitous. However, a major challenge has been the confirmation of Kepler planet candidates, many of which still await confirmation. One of the most enigmati c examples is KOI 4.01, Keplers first discovered planet candidate detection (as KOI 1.01, 2.01, and 3.01 were known prior to launch). Here we present the confirmation and characterization of KOI 4.01 (now Kepler-1658), using a combination of asteroseismology and radial velocities. Kepler-1658 is a massive, evolved subgiant (Mstar = 1.45 +/- 0.06 Msun, Rstar = 2.89 +/- 0.12 Rsun) hosting a massive (Mp = 5.88 +/- 0.47 MJ, Rp = 1.07 +/- 0.05 RJ) hot Jupiter that orbits every 3.85 days. Kepler-1658 joins a small population of evolved hosts with short-period (<=100 days) planets and is now the closest known planet in terms of orbital period to an evolved star. Because of its uniqueness and short orbital period, Kepler-1658 is a new benchmark system for testing tidal dissipation and hot Jupiter formation theories. Using all 4 years of Kepler data, we constrain the orbital decay rate to be Pdot <= -0.42 s/yr, corresponding to a strong observational limit of Qstar >= 4.826 x 10^3 for the tidal quality factor in evolved stars. With an effective temperature Teff ~6200 K, Kepler-1658 sits close to the spin-orbit misalignment boundary at ~6250 K, making it a prime target for follow-up observations to better constrain its obliquity and to provide insight into theories for hot Jupiter formation and migration.
We use the Auriga cosmological simulations of Milky Way (MW)-mass galaxies and their surroundings to study the satellite populations of dwarf galaxies in $Lambda$CDM. As expected from prior work, the number of satellites above a fixed stellar mass is a strong function of the mass of the primary dwarf. For galaxies as luminous as the Large Magellanic Cloud (LMC), and for halos as massive as expected for the LMC (determined by its rotation speed), the simulations predict about 3 satellites with stellar masses exceeding $M_*>10^5, M_odot$. If the LMC is on its first pericentric passage, then these satellites should be near the LMC and should have orbital angular momenta roughly coincident with that of the LMC. We use 3D positions and velocities from the 2nd data release of the Gaia mission to revisit which of the classical MW dwarf spheroidals could plausibly be LMC satellites. The new proper motions of the Fornax and Carina dwarf spheroidals place them on orbits closely aligned with the orbital plane of the Magellanic Clouds, hinting at a potential Magellanic association. Together with the Small Magellanic Cloud (SMC), this result raises to $3$ the number of LMC satellites with $M_*>10^5, M_odot$, as expected from simulations. This also fills the 12-mag luminosity gap between the SMC and the ultra-faints Hyi1, Car2, Hor1, and Car3, the few ultra-faint satellites confirmed to have orbits consistent with a Magellanic origin.
We reinvestigate the problem of the appearance of relativistic jets when geometrical opening is taken into account. We propose a new criterion to define apparent velocities and Doppler factors, which we think being determined by the brightest zone of the jet. We numerically compute the apparent velocity and the Doppler factor of a non homokinetic jet using different velocity profiles. We argue that if the motion is relativistic, the high superluminal velocities beta_{app} ~ gamma, expected in the case of an homokinetic jet, are only possible for geometrical collimation smaller than the relativistic beaming angle 1/gamma. This is relatively independent of the jet velocity profile. For jet collimation angles larger than 1/gamma, the apparent image of the jet will always be dominated by parts of the jet traveling directly towards the observer at lorentz factors < gamma resulting in maximal apparent velocities smaller than gamma}. Furthermore, getting rid of the homokinetic hypothesis yields a complex relation between the observing angle and the Doppler factor, resulting in important consequences for the numerical computation of AGN population and unification scheme model.
138 - Tracy E. Clarke 2011
Abell 2256 is a rich, nearby (z=0.0594) galaxy cluster that has significant evidence of merger activity. We present new radio and X-ray observations of this system. The low-frequency radio images trace the diffuse synchrotron emission of the Mpc-scal e radio halo and relics as well as a number of recently discovered, more compact, steep spectrum sources. The spectral index across the relics steepens from the north-west toward the south-east. Analysis of the spectral index gradients between low and and high-frequencies shows spectral differences away from the north-west relic edge such that the low-frequency index is significantly flatter than the high frequency spectral index near the cluster core. This trend would be consistent with an outgoing merger shock as the origin of the relic emission. New X-ray data from XMM-Newton reveal interesting structures in the intracluster medium pressure, entropy and temperature maps. The pressure maps show an overall low pressure core co-incident with the radio halo emission, while the temperature maps reveal multiple regions of cool emission within the central regions of Abell 2256. The two cold fronts in Abell 2256 both appear to have motion in similar directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا