ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the simultaneous measurement of the structural and electronic components of the metal-insulator transition of VO$_2$ using electron and photoelectron spectroscopies and microscopies. We show that these evolve over different temperature scal es, and are separated by an unusual monoclinic-like metallic phase. Our results provide conclusive evidence that the new monoclinic-like metallic phase, recently identified in high-pressure and nonequilibrium measurements, is accessible in the thermodynamic transition at ambient pressure, and we discuss the implications of these observations on the nature of the MIT in VO$_2$.
We investigate the differences in the dynamics of the ultrafast photo-induced metal-insulator transition (MIT) of two VO$_2$ thin films deposited on different substrates, TiO$_2$ and Al$_2$O$_3$, and in particular the temperature dependence of the th reshold laser fluence values required to induce various MIT stages in a wide range of sample temperatures (150 K - 320 K). We identified that, although the general pattern of MIT evolution was similar for the two samples, there were several differences. Most notably, the threshold values of laser fluence required to reach the transition to a fully metallic phase in the VO$_2$ film on the TiO$_2$ substrate were nearly constant in the range of temperatures considered, whereas the VO$_2$/Al$_2$O$_3$ sample showed clear temperature dependence. Our analysis qualitatively connects such behavior to the structural differences in the two VO$_2$ films.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا