ﻻ يوجد ملخص باللغة العربية
We report the simultaneous measurement of the structural and electronic components of the metal-insulator transition of VO$_2$ using electron and photoelectron spectroscopies and microscopies. We show that these evolve over different temperature scales, and are separated by an unusual monoclinic-like metallic phase. Our results provide conclusive evidence that the new monoclinic-like metallic phase, recently identified in high-pressure and nonequilibrium measurements, is accessible in the thermodynamic transition at ambient pressure, and we discuss the implications of these observations on the nature of the MIT in VO$_2$.
Ultrafast phase transitions induced by femtosecond light pulses present a new opportunity for manipulating the properties of materials. Understanding how these transient states are different from, or similar to, their thermal counterparts is key to d
We investigate the electronic and structural changes at the nanoscale in vanadium dioxide (VO2) in the vicinity of its thermally driven phase transition. Both electronic and structural changes exhibit phase coexistence leading to percolation. In addi
The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated su
Emergent order at mesoscopic length scales in condensed matter can provide fundamental insight into the underlying competing interactions and their relationship with the order parameter. Using spectromicroscopy, we show that mesoscopic stripe order n
We report in-situ Raman scattering studies of electrochemically top gated VO$_2$ thin film to address metal-insulator transition (MIT) under gating. The room temperature monoclinic insulating phase goes to metallic state at a gate voltage of 2.6 V. H