ﻻ يوجد ملخص باللغة العربية
We investigate the differences in the dynamics of the ultrafast photo-induced metal-insulator transition (MIT) of two VO$_2$ thin films deposited on different substrates, TiO$_2$ and Al$_2$O$_3$, and in particular the temperature dependence of the threshold laser fluence values required to induce various MIT stages in a wide range of sample temperatures (150 K - 320 K). We identified that, although the general pattern of MIT evolution was similar for the two samples, there were several differences. Most notably, the threshold values of laser fluence required to reach the transition to a fully metallic phase in the VO$_2$ film on the TiO$_2$ substrate were nearly constant in the range of temperatures considered, whereas the VO$_2$/Al$_2$O$_3$ sample showed clear temperature dependence. Our analysis qualitatively connects such behavior to the structural differences in the two VO$_2$ films.
We study the thermal relaxation dynamics of VO$_2$ films after the ultrafast photo-induced metal-insulator transition for two VO$_2$ film samples grown on Al$_2$O$_3$ and TiO$_2$ substrates. We find two orders of magnitude difference in the recovery
We have carried out a systematic experimental investigation to address the question why thin films of Fe$_3$O$_4$ (magnetite) generally have a very broad Verwey transition with lower transition temperatures as compared to the bulk. We observed using
We utilize near-infrared pump and mid-infrared probe spectroscopy to investigate the ultrafast electronic response of pressurized VO$_2$. Distinct pump-probe signals and a pumping threshold behavior are observed even in the pressure-induced metallic
VO2 is a strongly correlated material, which undergoes a reversible metal insulator transition (MIT) coupled to a structural phase transition upon heating (T= 67{deg} C). Since its discovery the nature of the insulating state has long been debated an
We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering s