ترغب بنشر مسار تعليمي؟ اضغط هنا

We have undertaken a survey for HI 21-cm absorption within the host galaxies of z ~ 1.2 - 1.5 radio sources, in the search of the cool neutral gas currently missing at z > 1. This deficit is believed to be due to the optical selection of high redshif t objects biasing surveys towards sources of sufficient ultra-violet luminosity to ionise all of the gas in the surrounding galaxy. In order to avoid this bias, we have selected objects above blue magnitudes of B~20, indicating ultra-violet luminosities below the critical value above which 21-cm has never been detected. As a secondary requirement to the radio flux and faint optical magnitude, we shortlist targets with radio spectra suggestive of compact sources, in order to maximise the coverage of background emission. From this, we obtain one detection out of ten sources searched, which at z=1.278 is the third highest redshift detection of associated 21-cm absorption to date. Accounting for the spectra compromised by radio frequency interference, as well as various other possible pitfalls (reliable optical redshifts and turnover frequencies indicative of compact emission), we estimate a detection rate of ~30%, close to that expected for L_UV < 1e23 W/Hz sources.
67 - J. R. Allison 2012
We report conclusive verification of the detection of associated HI 21 cm absorption in the early-type host galaxy of the compact radio source PMNJ2054-4242. We estimate an effective spectral line velocity width of 418 +/- 20 km s^{-1} and observed p eak optical depth of 2.5 +/- 0.2 per cent, making this one of the broadest and weakest 21 cm absorption lines yet detected. For T_{spin}/f > 100 K the atomic neutral hydrogen column density is N_{HI} > 2 x 10^{21} cm^{-2}. The observed spectral line profile is redshifted by 187 +/- 46 km s^{-1}, with respect to the optical spectroscopic measurement, perhaps indicating that the HI gas is infalling towards the central active galactic nucleus. Our initial tentative detection would likely have been dismissed by visual inspection, and hence its verification here is an excellent test of our spectral line detection technique, currently under development in anticipation of future next-generation 21 cm absorption-line surveys.
75 - J. R. Allison 2012
We present results from a search for 21 cm associated HI absorption in a sample of 29 radio sources selected from the Australia Telescope 20 GHz survey. Observations were conducted using the Australia Telescope Compact Array Broadband Backend, with w hich we can simultaneously look for 21 cm absorption in a redshift range of 0.04 < z < 0.08, with a velocity resolution of 7 km/s . In preparation for future large-scale H I absorption surveys we test a spectral-line finding method based on Bayesian inference. We use this to assign significance to our detections and to determine the best-fitting number of spectral-line components. We find that the automated spectral-line search is limited by residuals in the continuum, both from the band-pass calibration and spectral-ripple subtraction, at spectral-line widths of Deltav_FWHM > 103 km/s . Using this technique we detect two new absorbers and a third, previously known, yielding a 10 per cent detection rate. Of the detections, the spectral-line profiles are consistent with the theory that we are seeing different orientations of the absorbing gas, in both the host galaxy and circumnuclear disc, with respect to our line-of-sight to the source. In order to spatially resolve the spectral-line components in the two new detections, and so verify this conclusion, we require further high-resolution 21 cm observations (~0.01 arcsec) using very long baseline interferometry.
We have used the ATCA and the SEST to map the large-scale atomic and molecular gas in the nearby Circinus galaxy. The HI mosaic of Circinus exhibits the warps in position angle and inclination revealed in the single-pointing image, both of which appe ar to settle beyond the inner 30 kpc which was previously imaged. The molecular gas has been mapped in both the CO transitions, where we derive a total molecular gas mass of ~2e9 Mo. Within a radius of 3 kpc, i.e. where CO was clearly detected, the molecular fraction climbs steeply from ~0.7 to unity with proximity to the nucleus. Our HI mosaic gives an atomic gas mass of ~6e9 Mo which is 70% of the fully mapped single dish value. The total neutral gas mass to dynamical mass ratio is therefore 3%, consistent with the SAS3 classification of Circinus. The high (molecular) gas mass fraction found previously, only occurs close to the central ~0.5 kpc and falls to < 10% within and outwith this region, allaying previous concerns regarding the validity of applying the Galactic conversion ratio to Circinus. The rotation curve, as traced by both the HI and CO, exhibits a steep dip at ~1 kpc, the edge of the atomic/molecular ring, within which the star-burst is occurring. We find the atomic and molecular gases to trace different kinematical features and believe that the fastest part of the sub-kpc ring consists overwhelmingly of molecular gas. Beyond the inner kpc, the velocity climbs to settle into a solid body rotation at >10 kpc. Most of the starlight emanates from within this radius and so much of the dynamical mass, which remains climbing to the limit of our data (>50 kpc), must be due to the dark matter halo.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا