ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad, weak 21 cm absorption in an early type galaxy: spectral-line finding and parametrization for future surveys

66   0   0.0 ( 0 )
 نشر من قبل James Allison
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. R. Allison




اسأل ChatGPT حول البحث

We report conclusive verification of the detection of associated HI 21 cm absorption in the early-type host galaxy of the compact radio source PMNJ2054-4242. We estimate an effective spectral line velocity width of 418 +/- 20 km s^{-1} and observed peak optical depth of 2.5 +/- 0.2 per cent, making this one of the broadest and weakest 21 cm absorption lines yet detected. For T_{spin}/f > 100 K the atomic neutral hydrogen column density is N_{HI} > 2 x 10^{21} cm^{-2}. The observed spectral line profile is redshifted by 187 +/- 46 km s^{-1}, with respect to the optical spectroscopic measurement, perhaps indicating that the HI gas is infalling towards the central active galactic nucleus. Our initial tentative detection would likely have been dismissed by visual inspection, and hence its verification here is an excellent test of our spectral line detection technique, currently under development in anticipation of future next-generation 21 cm absorption-line surveys.

قيم البحث

اقرأ أيضاً

We forecast astrophysical and cosmological parameter constraints from synergies between 21 cm intensity mapping and wide field optical galaxy surveys (both spectroscopic and photometric) over $z sim 0-3$. We focus on the following survey combinations in this work: (i) a CHIME-like and DESI-like survey in the northern hemisphere, (ii) an LSST-like and SKA I MID-like survey and (ii) a MeerKAT-like and DES-like survey in the southern hemisphere. We work with the $Lambda$CDM cosmological model having parameters ${h, Omega_m, n_s, Omega_b, sigma_8}$, parameters $v_{c,0}$ and $beta$ representing the cutoff and slope of the HI-halo mass relation in the previously developed HI halo model framework, and a parameter $Q$ that represents the scale dependence of the optical galaxy bias. Using a Fisher forecasting framework, we explore (i) the effects of the HI and galaxy astrophysical uncertainties on the cosmological parameter constraints, assuming priors from the present knowledge of the astrophysics, (ii) the improvements on astrophysical constraints over their current priors in the three configurations considered, (ii) the tightening of the constraints on the parameters relative to the corresponding HI auto-correlation surveys alone.
It has been argued that certain broad absorption line quasars are viewed within 35 degrees of the axis of a relativistic radio jet, based on two-epoch radio flux density variability. It is true if the surface brightness of a radio source is observed to change by a sufficiently large amount, the inferred brightness temperature will exceed 10^12 K and Doppler beaming in our direction must be invoked to avoid a Compton cooling catastrophe. However, flux density changes cannot be linked to surface brightness changes without knowledge of the size of the source. If an optically thick source changes in projected area but not surface brightness, its brightness temperature is constant and its flux variability yields no constraint on its orientation. Moreover, as pointed out by Rees, spherical expansion of an emission source at relativistic speeds yields an apparently superluminal increase in its projected area, which can explain short-timescale flux density variability without requiring a relativistic jet oriented near to our line of sight. Therefore, two-epoch radio flux density variability by itself cannot unambiguously identify sources with jets directed towards us. Only VLBI imaging can robustly determine the fraction of broad absorption line quasars which are polar.
We use the results of previous work building a halo model formalism for the distribution of neutral hydrogen, along with experimental parameters of future radio facilities, to place forecasts on astrophysical and cosmological parameters from next gen eration surveys. We consider 21 cm intensity mapping surveys conducted using the BINGO, CHIME, FAST, TianLai, MeerKAT and SKA experimental configurations. We work with the 5-parameter cosmological dataset of {$Omega_m, sigma_8, h, n_s, Omega_b$} assuming a flat $Lambda$CDM model, and the astrophysical parameters {$v_{c,0}, beta$} which represent the cutoff and slope of the HI- halo mass relation. We explore (i) quantifying the effects of the astrophysics on the recovery of the cosmological parameters, (ii) the dependence of the cosmological forecasts on the details of the astrophysical parametrization, and (iii) the improvement of the constraints on probing smaller scales in the HI power spectrum. For an SKA I MID intensity mapping survey alone, probing scales up to $ell_{rm max} = 1000$, we find a factor of $1.1 - 1.3$ broadening in the constraints on $Omega_b$ and $Omega_m$, and of $2.4 - 2.6$ on $h$, $n_s$ and $sigma_8$, if we marginalize over astrophysical parameters without any priors. However, even the prior information coming from the present knowledge of the astrophysics largely alleviates this broadening. These findings do not change significantly on considering an extended HIHM relation, illustrating the robustness of the results to the choice of the astrophysical parametrization. Probing scales up to $ell_{rm max} = 2000$ improves the constraints by factors of 1.5-1.8. The forecasts improve on increasing the number of tomographic redshift bins, saturating, in many cases, with 4 - 5 redshift bins. We also forecast constraints for intensity mapping with other experiments, and draw similar conclusions.
55 - Paolo Panci 2019
In this short review I present the status of the global 21-cm signal detected by EDGES in March 2018. It is organized in three parts. First, I present the EDGES experiment and the fitting procedure used by the collaboration to extract the tiny 21-cm signal from large foregrounds of galactic synchrotron emission. Then, I review the physics behind the global 21-cm signature and I explain why the measured absorption feature is anomalous with respect to the predictions from standard astrophysics. I conclude with the implications for Beyond Standard Model (BSM) physics coming from the EDGES discovery.
75 - Fulvio Melia 2021
The EDGES collaboration has reported the detection of a global 21-cm signal with a plateau centered at 76 MHz (i.e., redshift 17.2), with an amplitude of 500^(+200)_(-500) mK. This anomalous measurement does not comport with standard cosmology, which can only accommodate an amplitude < 230 mK. Nevertheless, the line profiles redshift range (15 < z < 20) suggests a possible link to Pop III star formation and an implied evolution out of the `dark ages. Given this tension with the standard model, we here examine whether the observed 21-cm signal is instead consistent with the results of recent modeling based on the alternative Friedmann-Lemaitre-Robertson-Walker cosmology known as the R_h=ct universe, showing that--in this model--the CMB radiation might have been rethermalized by dust ejected into the IGM by the first-generation stars at redshift z < 16. We find that the requirements for this process to have occurred would have self-consistently established an equilibrium spin temperature T_s~3.4 K in the neutral hydrogen, via the irradiation of the IGM by deep penetrating X-rays emitted at the termination shocks of Pop III supernova remnants. Such a dust scenario has been strongly ruled out for the standard model, so the spin temperature (~3.3 K) inferred from the 21-cm absorption feature appears to be much more consistent with the R_h=ct profile than that implied by LCDM, for which adiabatic cooling would have established a spin temperature T_s(z=17.2)~6 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا