ترغب بنشر مسار تعليمي؟ اضغط هنا

160 - V. Buat , N. Oi , S. Heinis 2015
(Abridged) We aim to study the evolution of dust attenuation in galaxies selected in the IR in the redshift range in which they are known to dominate the star formation activity in the universe. The comparison with other measurements of dust attenuat ion in samples selected using different criteria will give us a global picture of the attenuation at work in star-forming galaxies and its evolution with redshift. Using multiple filters of IRC instrument, we selected more than 4000 galaxies from their rest-frame emission at 8 microns, from z~0.2 to 2$. We built SEDs from the rest-frame UV to the far-IR by adding data in the optical-NIR and from GALEX and Herschel surveys. We fit SEDs with the physically-motivated code CIGALE. We test different templates for AGNs and recipes for dust attenuation and estimate stellar masses, SFRs, amount of dust attenuation, and AGN contribution to the total IR luminosity. The AGN contribution to the total IR luminosity is found to be on average approximately 10% with a slight increase with redshift. Dust attenuation in galaxies dominating the IR luminosity function is found to increase from z=0 to z=1 and to remain almost constant from z=1 to z=1.5. Conversely, when galaxies are selected at a fixed IR luminosity, their dust attenuation slightly decreases as redshift increases but with a large dispersion. The attenuation in our mid-IR selected sample is found ~ 2 mag higher than that found globally in the universe or in UV and Halpha line selections in the same redshift range. This difference is well explained by an increase of dust attenuation with the stellar mass, in global agreement with other recent studies. Starbursting galaxies do not systematically exhibit a high attenuation
113 - S. Kumar , S. Gezari , S. Heinis 2015
We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SV) and burst-like (BL) transients, using multi-band image-differencing time-series data. We s elect detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g,r,i, and z. We use three deterministic light-curve models to fit burst-like transients and one stochastic light curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGN). We assess the quality of fit of the models band-wise source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications. We use our clustering method to characterize 4361 extragalactic image difference detected sources in the first 2.5 years of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGN, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 active galactic nuclei and 812 supernovae. We use these samples to identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.
95 - V. Buat , S. Heinis , M. Boquien 2013
We seek to derive star formation rates (SFR) and stellar masses (M_star) in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrati ons or through a fitting process, as well as the impact of the available data, focusing on the role of IR emission originating from dust. We build a sample of galaxies with z>1, all observed from the UV to the IR (rest frame). The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different SFHs are introduced. We define different set of data, with or without a good sampling of the UV range, NIR, and thermal IR data. The impact of these different cases on the determination of M_star and SFR are analysed. Exponentially decreasing models with a redshift formation of the stellar population z ~8 cannot fit the data correctly. The other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter. The best fits are obtained with two stellar populations. As long as one measurement of the dust emission continuum is available, SFR are robustly estimated whatever the chosen model is, including standard recipes. M_star measurement is more subject to uncertainty, depending on the chosen model and the presence of NIR data, with an impact on the SFR-M_star scatter plot. Conversely, when thermal IR data from dust emission are missing, the uncertainty on SFR measurements largely exceeds that of stellar mass. Among all physical properties investigated here, the stellar ages are found to be the most difficult to constrain and this uncertainty acts as a second parameter in SFR measurements and as the most important parameter for M_star measurements.
We study the link between observed ultraviolet luminosity, stellar mass, and dust attenuation within rest-frame UV-selected samples at z~ 4, 3, and 1.5. We measure by stacking at 250, 350, and 500 um in the Herschel/SPIRE images from the HerMES progr am the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate and stellar mass at z~ 4, 3, and 1.5. The star formation rate-stellar mass relations are well described by power laws (SFR~ M^0.7), with the amplitudes being similar at z~4 and z~3, and decreasing by a factor of 4 at z~1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific star formation rate. Our results are in the upper range of previous measurements, in particular at z~3, and are consistent with a plateau at 3<z<4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the Main Sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5<z<4) stay around 1 Gyr on the Main Sequence. With decreasing redshift, this time increases such that z=1 Main Sequence galaxies with 10^8<M_*/Msun<10^10 stay on the Main Sequence until z=0.
370 - S. Heinis , V.Buat , M. Bethermin 2012
We study the far-infrared (IR) and sub-millimeter properties of a sample of ultraviolet (UV) selected galaxies at zsim1.5. Using stacking at 250, 350 and 500 um from Herschel Space Observatory SPIRE imaging of the COSMOS field obtained within the Her MES key program, we derive the mean IR luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR selected samples at the faintest luminosities (Lir ~ 10^{11} L_sun), but might underestimate them at the bright-end (Lir > 5.10^{11} L_sun). For galaxies with 10^{11}<Lir/L_sun<10^{13}, the IR luminosity function of a UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star-formation rate density derived from an IR selection. The cosmic star-formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far IR luminosity function from our UV selection at zsim 1.5. This suggests that a sample around 4 magnitudes deeper (i.e. reaching u sim 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
Dust attenuation curves in external galaxies are useful to study their dust properties as well as to interpret their intrinsic spectral energy distributions. In particular the presence or absence of a UV bump at 2175 A remains an open issue which has consequences on the interpretation of broad band colours of distant galaxies. We study the dust attenuation curve in the UV range at z >1. In particular we search for the presence of a UV bump. We use deep photometric data of the CDFS obtained with intermediate and broad band filters by the MUSYC project to sample the UV rest-frame of galaxies with 1<z <2. Herschel/PACS and Spitzer/MIPS data are used to measure the dust emission. 30 galaxies were selected with high S/N in all bands. Their SEDs from the UV to the far-IR are fitted using the CIGALE code and the characteristics of the dust attenuation curve are obtained. The mean dust attenuation curve we derive exhibits a UV bump at 2175A whose amplitude corresponds to 35 % (76%) that of the MW (LMC2 supershell) extinction curve. An analytical expression of the average attenuation curve is given, it is found slightly steeper than the Calzetti et al. one, although at a 1 sigma level. Our galaxy sample is used to study the derivation of the slopes of the UV continuum from broad band colours, including the GALEX FUV-NUV colour. Systematic errors induced by the presence of the bump are quantified. We compare dust attenuation factors measured with CIGALE to the slope of the UV continuum and find that there is a large scatter around the relation valid for local starbursts (0.7 mag). The uncertainties on the determination of the UV slope lead to an extra systematic error of the order of 0.3 to 0.7 mag on dust attenuation when a filter overlaps the UV bump.
As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman Break Galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBG s are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 < z < 1.6 and one object at z ~ 2.0. The ones detected by Herschel SPIRE have redder observed NUV-U and U-R colors than the others, while the undetected ones have colors consistent with average LBGs at z > 2.5. The UV-to-FIR spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code CIGALE to estimate physical parameters. We find that LBGs detected by SPIRE are high mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the A_FUV vs. Log L_FUV diagram limited by A_FUV=0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom-right to the top-left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of L_FUV}. The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age.
The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) is a complete blind survey of the Virgo cluster covering about 40 sq. deg. in the far UV (FUV, lambda_eff=1539A, Delta-lambda=442A) and about 120 sq. deg. in the near UV (NUV, lambda_eff=2316A, Delt a-lambda=1060A). The goal of the survey is to study the ultraviolet (UV) properties of galaxies in a rich cluster environment, spanning a wide luminosity range from giants to dwarfs, and regardless of prior knowledge of their star formation activity. The UV data will be combined with those in other bands (optical: NGVS; far-infrared - submm: HeViCS; HI: ALFALFA) and with our multizone chemo-spectrophotometric models of galaxy evolution to make a complete and exhaustive study of the effects of the environment on the evolution of galaxies in high density regions. We present here the scientific objectives of the survey, describing the observing strategy and briefly discussing different data reduction techniques. Using UV data already in-hand for the central 12 sq. deg. we determine the FUV and NUV luminosity functions of the Virgo cluster core for all cluster members and separately for early- and late-type galaxies and compare it to the one obtained in the field and other nearby clusters (Coma, A1367). This analysis shows that the FUV and NUV luminosity functions of the core of the Virgo clusters are flatter (alpha about -1.1) than those determined in Coma and A1367. We discuss the possible origin of this difference
46 - T. T. Takeuchi 2009
The AKARI All-Sky Survey provided the first bright point source catalog detected at 90um. Starting from this catalog, we selected galaxies by matching AKARI sources with those in the IRAS PSCz. Next, we have measured total GALEX FUV and NUV flux dens ities. Then, we have matched this sample with SDSS and 2MASS galaxies. By this procedure, we obtained the final sample which consists of 607 galaxies. If we sort the sample with respect to 90um, their average SED shows a coherent trend: the more luminous at 90um, the redder the global SED becomes. The M_r--NUV-r color-magnitude relation of our sample does not show bimodality, and the distribution is centered on the green valley between the blue cloud and red sequence seen in optical surveys. We have established formulae to convert FIR luminosity from AKARI bands to the total infrared (IR) luminosity L_TIR. With these formulae, we calculated the star formation directly visible with FUV and hidden by dust. The luminosity related to star formation activity (L_SF) is dominated by L_TIR even if we take into account the far-infrared (FIR) emission from dust heated by old stars. At high star formation rate (SFR) (> 20 Msun yr^-1), the fraction of directly visible SFR, SFR_FUV, decreases. We also estimated the FUV attenuation A_FUV from FUV-to-total IR (TIR) luminosity ratio. We also examined the L_TIR/L_FUV-UV slope (FUV- NUV) relation. The majority of the sample has L_TIR/L_FUV ratios 5 to 10 times lower than expected from the local starburst relation, while some LIRGs and all the ULIRGs of this sample have higher L_TIR/L_FUV ratios. We found that the attenuation indicator L_TIR/L_FUV is correlated to the stellar mass of galaxies, M*, but there is no correlation with specific SFR (SSFR), SFR/M*, and dust attenuation L_TIR/L_FUV. (abridged)
We present a detailed study of the Galaxy Evolution Explorers photometric catalogs with special focus on the statistical properties of the All-sky and Medium Imaging Surveys. We introduce the concept of primaries to resolve the issue of multiple dete ctions and follow a geometric approach to define clean catalogs with well-understood selection functions. We cross-identify the GALEX sources (GR2+3) with Sloan Digital Sky Survey (DR6) observations, which indirectly provides an invaluable insight about the astrometric model of the UV sources and allows us to revise the band merging strategy. We derive the formal description of the GALEX footprints as well as their intersections with the SDSS coverage along with analytic calculations of their areal coverage. The crossmatch catalogs are made available for the public. We conclude by illustrating the implementation of typical selection criteria in SQL for catalog subsets geared toward statistical analyses, e.g., correlation and luminosity function studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا