ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation and dust extinction properties of local galaxies from AKARI-GALEX All-Sky Surveys: First results from most secure multiband sample from FUV to FIR

47   0   0.0 ( 0 )
 نشر من قبل Tsutomu Takeuchi T.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. T. Takeuchi




اسأل ChatGPT حول البحث

The AKARI All-Sky Survey provided the first bright point source catalog detected at 90um. Starting from this catalog, we selected galaxies by matching AKARI sources with those in the IRAS PSCz. Next, we have measured total GALEX FUV and NUV flux densities. Then, we have matched this sample with SDSS and 2MASS galaxies. By this procedure, we obtained the final sample which consists of 607 galaxies. If we sort the sample with respect to 90um, their average SED shows a coherent trend: the more luminous at 90um, the redder the global SED becomes. The M_r--NUV-r color-magnitude relation of our sample does not show bimodality, and the distribution is centered on the green valley between the blue cloud and red sequence seen in optical surveys. We have established formulae to convert FIR luminosity from AKARI bands to the total infrared (IR) luminosity L_TIR. With these formulae, we calculated the star formation directly visible with FUV and hidden by dust. The luminosity related to star formation activity (L_SF) is dominated by L_TIR even if we take into account the far-infrared (FIR) emission from dust heated by old stars. At high star formation rate (SFR) (> 20 Msun yr^-1), the fraction of directly visible SFR, SFR_FUV, decreases. We also estimated the FUV attenuation A_FUV from FUV-to-total IR (TIR) luminosity ratio. We also examined the L_TIR/L_FUV-UV slope (FUV- NUV) relation. The majority of the sample has L_TIR/L_FUV ratios 5 to 10 times lower than expected from the local starburst relation, while some LIRGs and all the ULIRGs of this sample have higher L_TIR/L_FUV ratios. We found that the attenuation indicator L_TIR/L_FUV is correlated to the stellar mass of galaxies, M*, but there is no correlation with specific SFR (SSFR), SFR/M*, and dust attenuation L_TIR/L_FUV. (abridged)

قيم البحث

اقرأ أيضاً

The GALEX Arecibo SDSS Survey (GASS) is an ambitious program designed to investigate the cold gas properties of massive galaxies, a challenging population for HI studies. Using the Arecibo radio telescope, GASS is gathering high-quality HI-line spect ra for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025 < z < 0.05, uniformly selected from the SDSS spectroscopic and GALEX imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5%) is reached. We present initial results based on the first Data Release, which consists of ~20% of the final GASS sample. We use this data set to explore the main scaling relations of HI gas fraction with galaxy structure and NUV-r colour, and show our best fit plane describing the relation between gas fraction, stellar mass surface density and NUV-r colour. Interesting outliers from this plane include gas-rich red sequence galaxies that may be in the process of regrowing their disks, as well as blue, but gas-poor spirals.
We study two galaxy samples selected in ultraviolet (UV) and in far-infrared (FIR) for which the spectral energy distributions (SEDs) from the far UV (FUV) to the FIR are available. We compare the observed SEDs to modelled SEDs with several star form ation histories (SFHs; decaying star formation rate plus burst) and attenuation laws (power law + 2175 Angstroem bump). The Bayesian method allows to estimate statistically the best parameters by comparing each observed SED to the full set of 82800 models. We reach the conclusion that the UV dust attenuation cannot be estimated correctly from an SED analysis if the FIR information is not used. The deduced dispersion is larger than with the FIR data and the distribution is not symetrically distributed about zero: there is an over-estimation for UV-selected galaxies and an under-estimation for FIR-selected galaxies. The output from the analysis process suggests that UV-selected galaxies have attenuation laws in average similar to the LMC extinction while FIR-selected galaxy attenuation laws more resemble the MW extinction law. The dispersion about the average relation in the Log(Fdust/Ffuv) vs. FUV-NUV diagram (once the main relation with FUV-NUV is accounted for) is explained by two other parameters: the slope of the attenuation law and the instantaneous birthrate parameter b_0 for UV-selected galaxies and the same ones plus the strength of the bump for the FIR-selected galaxies. We propose a recipe to estimate the UV dust attenuation for UV-galaxies only (that should be used whenever the FIR information is not available because the resulting Afuv is poorly defined with an uncertainty of about 0.32): A_{FUV} = 1.4168 (FUV-NUV)^2 + 0.3298 (NUV-I)^2 + 2.1207 (FUV-NUV) + 2.7465 (NUV-I) + 5.8408
Multi-wavelength, optical to IR/sub-mm observations of 5 strongly lensed galaxies identified by the Herschel Lensing Survey, plus two well-studied lensed galaxies, MS1512-cB58 and the Cosmic Eye, for which we also provide updated Herschel measurement s, are used to determine the physical properties of z~1.5-3 star-forming galaxies close to or below the detection limits of blank fields. We constrain their stellar and dust content, determine star formation rates and histories, dust attenuation and extinction laws, and other related properties. We perform SED-fits of the full photometry of each object as well for the optical and infrared parts separately, exploring various parameters, including nebular emission. The IR observations and emission line measurements, where available, are used a posteriori constraints on the models. Besides the various stellar population models we explore, we use the observed IR/UV ratio to estimate the extinction and create energy conserving models, that constrain most accurately the physical properties of our sources. Our sample has a median lensing-corrected IR luminosity ~ 3e11 Lsun, stellar masses between 2e9 and 2e11 Msun, and IR/UV luminosity ratios spanning a wide range. The dust masses of our galaxies are in the range 2 to 17e7 Msun, extending previous studies at the same redshift down to lower masses. We do not find any particular trend of the dust temperature Tdust with IR luminosity, suggesting an overall warmer dust regime at our redshift regardless of luminosity. Lensing enables us to study the detailed physical properties of individual IR-detected z~1.5-3 galaxies up to a factor ~10 fainter than achieved with deep blank field observations. We demonstrate that multi-wavelength observations combining stellar and dust emission can constrain star formation histories and extinction laws of star-forming galaxies.
105 - A. Solarz , A. Pollo , M. Bilicki 2019
We use the new release of the AKARI Far-Infrared all sky Survey matched with the NVSS radio database to investigate the local ($z<0.25$) far infrared-radio correlation (FIRC) of different types of extragalactic sources. To obtain the redshift informa tion for the AKARI FIS sources we crossmatch the catalogue with the SDSS DR8. This also allows us to use emission line properties to divide sources into four categories: i) star-forming galaxies (SFGs), ii) composite galaxies (displaying both star-formation and active nucleus components), iii) Seyfert galaxies, and iv) low-ionization nuclear emission-line region (LINER) galaxies. We find that the Seyfert galaxies have the lowest FIR/radio flux ratios and display excess radio emission when compared to the SFGs. We conclude that FIRC can be used to separate SFGs and AGNs only for the most radio-loud objects.
We combine Planck HFI data at 857, 545, 353 & 217GHz with data from WISE, Spitzer, IRAS & Herschel to investigate the properties of a flux limited sample of local star-forming galaxies. A 545GHz flux density limit was chosen so that the sample is 80% complete at this frequency, giving a sample of 234 local galaxies. We investigate the dust emission and star formation properties of the sample via various models & calculate the local dust mass function. Although 1-component modified black bodies fit the dust emission longward of 80um very well (median beta=1.83) the degeneracy between dust temp & beta also means that the SEDs are very well described by a dust emissivity index fixed at beta=2 and 10<T<25 K. Although a second, warmer dust component is required to fit shorter wavelength data, & contributes ~1/3 of the total infrared emission, its mass is negligible. No evidence is found for a very cold (6-10 K) dust component. The temp of the cold dust component is strongly influenced by the ratio of the star formation rate to the total dust mass. This implies, contrary to what is often assumed, that a significant fraction of even the emission from ~20 K dust is powered by ongoing star formation, whether or not the dust itself is associated with star forming clouds or `cirrus. There is statistical evidence of a free-free contribution to the 217GHz flux densities of <20%. We find a median dust-to-stellar mass ratio of 0.0046; & that this ratio is anti-correlated with galaxy mass. There is good correlation between dust mass & atomic gas mass (median M_d/M_HI = 0.022), suggesting that galaxies that have more dust have more interstellar medium in general. Our derived dust mass function implies a mean dust mass density of the local Universe (for dust within galaxies), of 7.0+-1.4 x 10^5 M_solar/Mpc, significantly greater than that found in the most recent estimate using Herschel data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا