ترغب بنشر مسار تعليمي؟ اضغط هنا

HerMES: dust attenuation and star formation activity in UV-selected samples from z~4 to z~1.5

89   0   0.0 ( 0 )
 نشر من قبل Sebastien Heinis
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the link between observed ultraviolet luminosity, stellar mass, and dust attenuation within rest-frame UV-selected samples at z~ 4, 3, and 1.5. We measure by stacking at 250, 350, and 500 um in the Herschel/SPIRE images from the HerMES program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate and stellar mass at z~ 4, 3, and 1.5. The star formation rate-stellar mass relations are well described by power laws (SFR~ M^0.7), with the amplitudes being similar at z~4 and z~3, and decreasing by a factor of 4 at z~1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific star formation rate. Our results are in the upper range of previous measurements, in particular at z~3, and are consistent with a plateau at 3<z<4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the Main Sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5<z<4) stay around 1 Gyr on the Main Sequence. With decreasing redshift, this time increases such that z=1 Main Sequence galaxies with 10^8<M_*/Msun<10^10 stay on the Main Sequence until z=0.

قيم البحث

اقرأ أيضاً

We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.
371 - S. Heinis , V.Buat , M. Bethermin 2012
We study the far-infrared (IR) and sub-millimeter properties of a sample of ultraviolet (UV) selected galaxies at zsim1.5. Using stacking at 250, 350 and 500 um from Herschel Space Observatory SPIRE imaging of the COSMOS field obtained within the Her MES key program, we derive the mean IR luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR selected samples at the faintest luminosities (Lir ~ 10^{11} L_sun), but might underestimate them at the bright-end (Lir > 5.10^{11} L_sun). For galaxies with 10^{11}<Lir/L_sun<10^{13}, the IR luminosity function of a UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star-formation rate density derived from an IR selection. The cosmic star-formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far IR luminosity function from our UV selection at zsim 1.5. This suggests that a sample around 4 magnitudes deeper (i.e. reaching u sim 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
Using new homogeneous LFs in the FUV and in the FIR Herschel/PEP and Herschel/HerMES, we study the evolution of the dust attenuation with redshift. With this information in hand, we are able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density SFRD_TOT. By integrating SFRD_TOT, we follow the mass building and analyze the redshift evolution of the stellar mass density (SMD). This letter aims at providing a complete view of star formation from the local universe to z = 4 and, using assumptions on earlier star formation history, compares this evolution to what was known before in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. The main conclusions of this letter are: 1) the dust attenuation A_FUV is found to increase from z = 0 to z sim 1.2 and then starts to decrease up to our last data point at z = 3.6; 2) the estimated SFRD confirms published results up to z = 2. At z > 2, we observe either a plateau or a small increase up to z = 3 and then a likely decrease up to z = 3.6; 3) the peak of A_FUV is delayed with respect to the plateau of SFRD_TOT and a likely origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (namely exponential rise and linear rise with time) for the evolution of the star formation density from z = 3.6 to z_form = 10, we integrate SFRD_TOT and find a good agreement with the published SMDs.
89 - Chun Ly 2012
Using deep narrow-band and broad-band imaging, we identify 401 z~0.40 and 249 z~0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alph a luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7^{+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an intrinsic H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z~0.5.
We investigate the properties (e.g. star formation rate, dust attentuation, stellar mass and metallicity) of a sample of infrared luminous galaxies at z sim 1 via near-IR spectroscopy with Subaru-FMOS. Our sample consists of Herschel SPIRE and Spitze r MIPS selected sources in the COSMOS field with photometric redshifts in the range 0.7 < z-phot < 1.8, which have been targeted in 2 pointings (0.5 sq. deg.) with FMOS. We find a modest success rate for emission line detections, with candidate H{alpha} emission lines detected for 57 of 168 SPIRE sources (34 per cent). By stacking the near-IR spectra we directly measure the mean Balmer decrement for the H{alpha} and H{beta} lines, finding a value of <E(B-V)> = 0.51pm0.27 for <LIR> = 10^12 Lsol sources at <z> = 1.36. By comparing star formation rates estimated from the IR and from the dust uncorrected H{alpha} line we find a strong relationship between dust attenuation and star formation rate. This relation is broadly consistent with that previously seen in star-forming galaxies at z ~ 0.1. Finally, we investigate the metallicity via the N2 ratio, finding that z ~ 1 IR-selected sources are indistinguishable from the local mass-metallicity relation. We also find a strong correlation between dust attentuation and metallicity, with the most metal-rich IR-sources experiencing the largest levels of dust attenuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا