ترغب بنشر مسار تعليمي؟ اضغط هنا

Blazars are astrophysical sources whose emission is dominated by non-thermal processes, typically interpreted as synchrotron and inverse Compton emission. Although the general picture is rather robust and consistent with observations, many aspects ar e still unexplored. Polarimetric monitoring can offer a wealth of information about the physical processes in blazars. Models with largely different physical ingredients can often provide almost indistinguishable predictions for the total flux, but usually are characterized by markedly different polarization properties. We explore, with a pilot study, the possibility to derive structural information about the emitting regions of blazars by means of a joint analysis of rapid variability of the total and polarized flux at optical wavelengths. Short timescale (from tens of seconds to a couple of minutes) optical linear polarimetry and photometry for two blazars, BL Lacertae and PKS 1424+240, was carried out with the PAOLO polarimeter at the 3.6m Telescopio Nazionale Galileo. Several hours of almost continuous observations were obtained for both sources. Our intense monitoring allowed us to draw strongly different scenarios for BL Lacertae and PKS 1424+240, with the former characterized by intense variability on time-scales from hours to a few minutes and the latter practically constant in total flux. Essentially the same behavior is observed for the polarized flux and the position angle. The variability time-scales turned out to be as short as a few minutes, although involving only a few percent variation of the flux. The polarization variability time-scale is generally consistent with the total flux variability. Total and polarized flux appear to be essentially uncorrelated. However, even during our relatively short monitoring, different regimes can be singled out. (abridged)
469 - K. Wiersema , S. Covino , K. Toma 2014
Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarizatio n directly probes the magnetic properties of the jet, when measured minutes after the burst, and the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after burst in GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and negligable circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blastwave. Here we report the detection of circularly polarized optical light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
We present the rest-frame light curves in the optical and X-ray bands of an unbiased and complete sample of Swift long Gamma-Ray Bursts (GRBs), namely the BAT6 sample. The unbiased BAT6 sample (consisting of 58 events) has the highest level of comple teness in redshift ($sim$ 95%), allowing us to compute the rest-frame X-ray and optical light curves for 55 and 47 objects, respectively. We compute the X-ray and optical luminosities accounting for any possible source of absorption (Galactic and intrinsic) that could affect the observed fluxes in these two bands. We compare the behaviour observed in the X-ray and in the optical bands to assess the relative contribution of the emission during the prompt and afterglow phases. We unarguably demonstrate that the GRBs rest-frame optical luminosity distribution is not bimodal, being rather clustered around the mean value Log(L$_{R}$) = 29.9 $pm$ 0.8 when estimated at a rest frame time of 12 hr. This is in contrast with what found in previous works and confirms that the GRB population has an intrinsic unimodal luminosity distribution. For more than 70% of the events the rest-frame light curves in the X-ray and optical bands have a different evolution, indicating distinct emitting regions and/or mechanisms. The X-ray light curves normalised to the GRB isotropic energy (E$_{rm iso}$), provide evidence for X-ray emission still powered by the prompt emission until late times ($sim$ hours after the burst event). On the other hand, the same test performed for the E$_{rm iso}$-normalised optical light curves shows that the optical emission is a better proxy of the afterglow emission from early to late times.
Starting from the Swift sample we define a complete sub-sample of 58 bright long Gamma Ray Bursts (GRB), 55 of them (95%) with a redshift determination, in order to characterize their properties. Our sample (BAT6) allows us to study the properties of the long GRB population and their evolution with cosmic time. We focus in particular on the GRB luminosity function, on the spectral-energy correlations of their prompt emission, on the nature of dark bursts, on possible correlations between the prompt and the X-ray afterglow properties, and on the dust extinction.
84 - G. Ghirlanda 2013
We estimate the initial bulk Lorentz factors Gamma_0 for GRBs that show the onset of the afterglow in their optical light curves. We find that Gamma_0 is strongly correlated with both the isotropic equivalent luminosity L_iso and energy E_iso and, wi th a larger scatter, also with the rest frame peak energy E_peak. These new correlations allow us to interpret the spectral energy correlations E_peak-L_iso (-E_iso) as a sequence of Gamma_0 factors. By accounting for the beaming effects, we find that the comoving frame properties of GRBs result clustered around typical values (e.g. L_iso~5x10^48 erg/s). Moreover, it is theoretically predicted that there should be a link between the jet dynamics (Gamma_0) and its geometry (theta_jet). Through a population synthesis code we reconstruct the Gamma_0 and theta_jet distributions and search for a possible link between them. We find that Gamma_0 and theta_jet in GRBs should have log-normal distributions and they should be anti correlated (i.e. theta_jet^2*Gamma_0=const).
We describe a new polarimetric facility available at the Istituto Nazionale di AstroFisica / Telescopio Nazionale Galileo at La Palma, Canary islands. This facility, PAOLO (Polarimetric Add-On for the LRS Optics), is located at a Nasmyth focus of an alt-az telescope and requires a specific modeling in order to remove the time- and pointing position-dependent instrumental polarization. We also describe the opto-mechanical structure of the instrument and its calibration and present early examples of applications.
In this paper we compute rest-frame extinctions for the afterglows of a sample of gamma-ray bursts complete in redshift. The selection criteria of the sample are based on observational high-energy parameters of the prompt emission and therefore our s ample should not be biased against dusty sight-lines. It is therefore expected that our inferences hold for the general population of gamma-ray bursts. Our main result is that the optical/near-infrared extinction of gamma-ray burst afterglows in our sample does not follow a single distribution. 87% of the events are absorbed by less than 2 mag, and 50% suffer from less than 0.3-0.4 mag extinction. The remaining 13% of the afterglows are highly absorbed. The true percentage of gamma-ray burst afterglows showing high absorption could be even higher since a fair fraction of the events without reliable redshift measurement are probably part of this class. These events may be due to highly dusty molecular clouds/star forming regions associated with the gamma-ray burst progenitor or along the afterglow line of sight, and/or to massive dusty host galaxies. No clear evolution in the dust extinction properties is evident within the redshift range of our sample, although the largest extinctions are at z~1.5-2, close to the expected peak of the star formation rate. Those events classified as dark are characterized, on average, by a higher extinction than typical events in the sample. A correlation between optical/near-infrared extinction and hydrogen-equivalent column density based on X-ray studies is shown although the observed NH appears to be well in excess compared to those observed in the Local Group. Dust extinction does not seem to correlate with GRB energetics or luminosity.
We perform a detailed study of the gamma-ray burst GRB091127/SN2009nz host galaxy at z=0.490 using the VLT/X-shooter spectrograph in slit and integral-field unit (IFU). From the analysis of the optical and X-ray afterglow data obtained from ground-ba sed telescopes and Swift-XRT we confirm the presence of a bump associated with SN2009nz and find evidence of a possible jet break in the afterglow lightcurve. The X-shooter afterglow spectra reveal several emission lines from the underlying host, from which we derive its integrated properties. These are in agreement with those of previously studied GRB-SN hosts and, more generally, with those of the long GRB host population. We use the Hubble Space Telescope and ground based images of the host to determine its stellar mass (M_star). Our results extend to lower M_star values the M-Z plot derived for the sample of long GRB hosts at 0.3<z<1.0 adding new information to probe the faint end of the M-Z relation and the shift of the LGRB host M-Z relation from that found from emission line galaxy surveys. Thanks to the IFU spectroscopy we can build the 2D velocity, velocity dispersion and star formation rate (SFR) maps. They show that the host galaxy has a perturbed rotation kinematics with evidence of a SFR enhancement consistent with the afterglow position.
The approach of Observational Astronomy is mainly aimed at the construction of larger aperture telescopes, more sensitive detectors and broader wavelength coverage. Certainly fruitful, this approach turns out to be not completely fulfilling the needs when phenomena related to the formation of black holes (BH), neutron stars (NS) and relativistic stars in general are concerned. Recently, mainly through the Vela, Beppo-SAX and Swift satellites, we reached a reasonable knowledge of the most violent events in the Universe and of some of the processes we believe are leading to the formation of black holes (BH). We plan to open a new window of opportunity to study the variegated physics of very fast astronomical transients, particularly the one related to extreme compact objects. The innovative approach is based on three cornerstones: 1) the design (the conceptual design has been already completed) of a 3m robotic telescope and related focal plane instrumentation characterized by the unique features: No telescope points faster; 2) simultaneous multi-wavelengths observations (photometry, spectroscopy o& polarimetry); 3) high time resolution observations. The conceptual design of the telescope and related instrumentation is optimized to address the following topics: High frequency a-periodic variability, Polarization, High z GRBs, Short GRBs, GRB-Supernovae association, Multi-wavelengths simultaneous photometry and rapid low dispersion spectroscopy. This experiment will turn the exception (like the optical observations of GRB 080319B) to routine.
On 28 May 2008, the Swift satellite detected the first reactivation of SGR 1627-41 since its discovery in 1998. Following this event we began an observing campaign in near infrared wavelengths to search for a possible counterpart inside the error c ircle of this SGR, which is expected to show flaring activity simultaneous to the high energy flares or at least some variability as compared to the quiescent state. For the follow-up we used the 0.6m REM robotic telescope at La Silla Observatory, which allowed a fast response within 24 hours and, through director discretionary time, the 8.2m Very Large Telescope at Paranal Observatory. There, we observed with NACO to produce high angular resolution imaging with the aid of adaptive optics. These observations represent the fastest near infrared observations after an activation of this SGR and the deepest and highest spatial resolution observations of the Chandra error circle. 5 sources are detected in the immediate vicinity of the most precise X-ray localisation of this source. For 4 of them we do not detect variability, although the X-ray counterpart experimented a significant decay during our observation period. The 5th source is only detected in one epoch, where we have the best image quality, so no variability constrains can be imposed and remains as the only plausible counterpart. We can impose a limit of Ks > 21.6 magnitudes to any other counterpart candidate one week after the onset of the activity. Our adaptive optics imaging, with a resolution of 0.2 provides a reference frame for subsequent studies of future periods of activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا