ترغب بنشر مسار تعليمي؟ اضغط هنا

260 - X. Plat , F. Alet , S. Capponi 2015
We investigate the properties in finite magnetic field of an extended anisotropic XXZ spin-1/2 model on the Kagome lattice, originally introduced by Balents, Fisher, and Girvin [Phys. Rev. B, 65, 224412 (2002)]. The magnetization curve displays plate aus at magnetization m=1/6 and 1/3 when the anisotropy is large. Using low-energy effective constrained models (quantum loop and quantum dimer models), we discuss the nature of the plateau phases, found to be crystals that break discrete rotation and/or translation symmetries. Large-scale quantum Monte-Carlo simulations were carried out in particular for the m=1/6 plateau. We first map out the phase diagram of the effective quantum loop model with an additional loop-loop interaction to find stripe order around the point relevant for the original model as well as a topological Z2 spin liquid. The existence of a stripe crystalline phase is further evidenced by measuring both standard structure factor and entanglement entropy of the original microscopic model.
We investigate possible realizations of exotic SU(N) symmetry-protected topological (SPT) phases with alkaline-earth cold fermionic atoms loaded into one-dimensional optical lattices. A thorough study of two-orbital generalizations of the standard SU (N) Fermi-Hubbard model, directly relevant to recent experiments, is performed. Using state-of-the-art analytical and numerical techniques, we map out the zero-temperature phase diagrams at half-filling and identify several Mott-insulating phases. While some of them are rather conventional (non-degenerate, charge-density-wave or spin-Peierls like), we also identify, for even-N, two distinct types of SPT phases: an orbital-Haldane phase, analogous to a spin-N/2 Haldane phase, and a topological SU(N) phase, which we fully characterize by its entanglement properties. We also propose sets of non-local order parameters that characterize the SU(N) topological phases found here.
We investigate the existence of symmetry-protected topological phases in one-dimensional alkaline-earth cold fermionic atoms with general half-integer nuclear spin I at half filling. In this respect, some orbital degrees of freedom are required. They can be introduced by considering either the metastable excited state of alkaline-earth atoms or the p-band of the optical lattice. Using complementary techniques, we show that SU(2) Haldane topological phases are stabilised from these orbital degrees of freedom. On top of these phases, we find the emergence of topological phases with enlarged SU(2I+1) symmetry which depend only on the nuclear spin degrees of freedom. The main physical properties of the latter phases are further studied using a matrix-product state approach. On the one hand, we find that these phases are symmetry-protected topological phases, with respect to inversion symmetry, when I=1/2,5/2,9/2,..., which is directly relevant to ytterbium and strontium cold fermions. On the other hand, for the other values of I(=half-odd integer), these topological phases are stabilised only in the presence of exact SU(2I+1)-symmetry.
Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physic s of the Mott-insulating phase of the system. Exact diagonalizations of the so-derived models on small clusters are performed, in order to assess the quality of the effective low-energy theory in the spin-liquid regime. We show that six-spin interactions on the elementary loop of the honeycomb lattice are the dominant sub-leading effective couplings. A minimal spin model is shown to reproduce most of the energetic properties of the Hubbard model on the honeycomb lattice in its spin-liquid phase. Surprisingly, a more elaborate effective low-energy spin model obtained by a systematic graph expansion rather disagrees beyond a certain point with the numerical results for the Hubbard model at intermediate couplings.
We investigate the competition between different orders in the two-leg spin ladder with a ring-exchange interaction by means of a bosonic approach. The latter is defined in terms of spin-1 hardcore bosons which treat the Neel and vector chirality ord er parameters on an equal footing. A semiclassical approach of the resulting model describes the phases of the two-leg spin ladder with a ring-exchange. In particular, we derive the low-energy effective actions which govern the physical properties of the rung-singlet and dominant vector chirality phases. As a by-product of our approach, we reveal the mutual induction phenomenon between spin and chirality with, for instance, the emergence of a vector-chirality phase from the application of a magnetic field in bilayer systems coupled by four-spin exchange interactions.
We investigate the nature of the Mott-insulating phases of half-filled 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of conformal field theory techniques and large-scale DMRG calculations, we show that the phase diagram strongly depends on the parity of $N$. First, we single out charged, spin-singlet, degrees of freedom, that carry a pseudo-spin ${cal S}=N/2$ allowing to formulate a Haldane conjecture: for attractive interactions, we establish the emergence of Haldane insulating phases when $N$ is even, whereas a metallic behavior is found when $N$ is odd. We point out that the $N=1,2$ cases do emph{not} have the generic properties of each family. The metallic phase for $N$ odd and larger than 1 has a quasi-long range singlet pairing ordering with an interesting edge-state structure. Moreover, the properties of the Haldane insulating phases with even $N$ further depend on the parity of N/2. In this respect, within the low-energy approach, we argue that the Haldane phases with N/2 even are not topologically protected but equivalent to a topologically trivial insulating phase and thus confirm the recent conjecture put forward by Pollmann {it et al.} [Pollmann {it et al.}, arXiv:0909.4059 (2009)].
112 - C.A. Lamas , S. Capponi , P. Pujol 2011
We investigate the magnetic properties of quasi-one-dimensional quantum spin-S antiferromagnets. We use a combination of analytical and numerical techniques to study the presence of plateaux in the magnetization curve. The analytical technique consis ts in a path integral formulation in terms of coherent states. This technique can be extended to the presence of doping and has the advantage of a much better control for large spins than the usual bosonization technique. We discuss the appearance of doping-dependent plateaux in the magnetization curves for spin-S chains and ladders. The analytical results are complemented by a density matrix renormalization group (DMRG) study for a trimerized spin-1/2 and anisotropic spin-3/2 doped chains.
154 - F. Alet , S. Capponi , H. Nonne 2010
The zero-temperature properties of the SO(5) bilinear-biquadratic Heisenberg spin chain are investigated by means of a low-energy approach and large scale numerical calculations. In sharp contrast to the spin-1 SO(3) Heisenberg chain, we show that th e SO(5) Heisenberg spin chain is dimerized with a two-fold degenerate ground state. On top of this gapful phase, we find the emergence of a non-degenerate gapped phase with hidden (Z$_2$ $times$ Z$_2$)$^2$ symmetry and spin-3/2 edge states that can be understood from a SO(5) AKLT wave function. We derive a low-energy theory describing the quantum critical point which separates these two gapped phases. It is shown and confirmed numerically that this quantum critical point belongs to the SO(5)$_1$ universality class.
65 - H. Nonne , E. Boulat , S. Capponi 2010
By using a combination of several non-perturbative techniques -- a one-dimensional field theoretical approach together with numerical simulations using density matrix renormalization group -- we present an extensive study of the phase diagram of the generalized Hund model at half-filling. This model encloses the physics of various strongly correlated one-dimensional systems, such as two-leg electronic ladders, ultracold degenerate fermionic gases carrying a large hyperfine spin 3/2, other cold gases like Ytterbium 171 or alkaline-earth condensates. A particular emphasis is laid on the possibility to enumerate and exhaust the eight possible Mott insulating phases by means of a duality approach. We exhibit a one-to-one correspondence between these phases and those of the two-leg Hubbard ladder with interchain hopping. Our results obtained from a weak coupling analysis are in remarkable quantitative agreement with our numerical results carried out at moderate coupling.
We investigate the effect of the anisotropy between the s-wave scattering lengths of a three-component atomic Fermi gas loaded into a one-dimensional optical lattice. We find four different phases which support trionic instabilities made of bound sta tes of three fermions. These phases distinguish themselves by the relative phases between the 2$k_F$ atomic density waves fluctuations of the three species. At small enough densities or strong anisotropies we give further evidences for a decoupling and the stabilization of more conventional BCS phases. Finally our results are discussed in light of a recent experiment on $^{6}$Li atoms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا