ﻻ يوجد ملخص باللغة العربية
Motivated by the recent discovery of a spin liquid phase for the Hubbard model on the honeycomb lattice at half-filling, we apply both perturbative and non-perturbative techniques to derive effective spin Hamiltonians describing the low-energy physics of the Mott-insulating phase of the system. Exact diagonalizations of the so-derived models on small clusters are performed, in order to assess the quality of the effective low-energy theory in the spin-liquid regime. We show that six-spin interactions on the elementary loop of the honeycomb lattice are the dominant sub-leading effective couplings. A minimal spin model is shown to reproduce most of the energetic properties of the Hubbard model on the honeycomb lattice in its spin-liquid phase. Surprisingly, a more elaborate effective low-energy spin model obtained by a systematic graph expansion rather disagrees beyond a certain point with the numerical results for the Hubbard model at intermediate couplings.
We take advantage of recent improvements in the grand canonical Hybrid Monte Carlo algorithm, to perform a precision study of the single-particle gap in the hexagonal Hubbard model, with on-site electron-electron interactions. After carefully control
Quantum phase transitions in the Hubbard model on the honeycomb lattice are investigated in the variational cluster approximation. The critical interaction for the paramagnetic to antiferromagnetic phase transition is found to be in remarkable agreem
Electrons in artificial lattices enable explorations of the impact of repulsive Coulomb interactions in a tunable system. We have trapped two-dimensional electrons belonging to a gallium arsenide quantum well in a nanofabricated lattice with honeycom
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at lig
We investigate the competition between charge-density-wave (CDW) states and a Coulomb interaction-driven topological Mott insulator (TMI) in the honeycomb extended Hubbard model. For the spinful model with on-site ($U$) and next-nearest-neighbor ($V_