ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - B. L. Kang , M. Z. Shi , S. J. Li 2019
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher temperature than the long-range phase coherence in the underdoped high-Tc cuprate superconductors. Recently, whether electron pairing is also prior to long-range phase coherence in single-layer FeSe film on SrTiO3 substrate is under debate. Here, by measuring Knight shift and nuclear spin-lattice relaxation rate, we unambiguously reveal a pseudogap behavior below Tp ~ 60 K in two layered FeSe-based superconductors with quasi-two-dimension. In the pseudogap regime, a weak diamagnetic signal and a remarkable Nernst effect are also observed, which indicate that the observed pseudogap behavior is related to superconducting fluctuations. These works confirm that strong phase fluctuation is an important character in the two-dimensional iron-based superconductors as widely observed in high-Tc cuprate superconductors.
We conducted a high-precision elemental abundance analysis of the twin-star comoving pair HIP34407/HIP34426. With mean error of 0.013 dex in the differential abundances (D[X/H]), a significant difference was found: HIP34407 is more metal-rich than HI P34426. The elemental abundance differences correlate strongly with condensation temperature, with the lowest for the volatile elements like carbon around 0.05+/-0.02 dex, and the highest up to about 0.22+/-0.01 dex for the most refractory elements like aluminum. Dissimilar chemical composition for stars in twin-star comoving pairs are not uncommon, thus we compile previously-published results like ours and look for correlations between abundance differences and stellar parameters, finding no significant trends with average effective temperature, surface gravity, iron abundance, or their differences. Instead, we found a weak correlation between the absolute value of abundance difference and the projected distance between the stars in each pair that appears to be more important for elements which have a low absolute abundance. If confirmed, this correlation could be an important observational constraint for binary star system formation scenarios.
449 - D. Zhao , S. J. Li , N. Z. Wang 2017
Although Fe-based superconductors are multiorbital correlated electronic systems, previous nuclei magnetic resonance (NMR) measurement suggests that a single spin-fluid model is sufficient to describe its spin behavior. Here, we firstly observed the breakdown of single spin-fluid model in a heavily hole-doped Fe-based superconductor CsFe2As2 by site-selective NMR measurement. At high temperature regime, both of Knight shift and nuclei spin-lattice relaxation at 133Cs and 75As nuclei exhibit distinct temperature-dependent behavior, suggesting the breakdown of single spin-fluid model in CsFe2As2. This is ascribed to the coexistence of both localized and itinerant spin degree of freedom at 3d orbits, which is consistent with orbital-selective Mott phase. However, single spin-fluid behavior is gradually recovered by developing a coherent state among 3d orbits with decreasing temperature. A Kondo liquid scenario is proposed for the low-temperature coherent state. The present work sets strong constraint on the theoretical model for Fe-based superconductors.
We present an analysis of cool outflowing gas around galaxies, traced by MgII absorption lines in the co-added spectra of a sample of 486 zCOSMOS galaxies at 1 < z < 1.5. These galaxies span a range of stellar masses (9.45< log[M*/Msun]<10.7) and sta r formation rates (0.14 < log [SFR/Msun/yr] < 2.35). We identify the cool outflowing component in the MgII absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong effect with star formation surface density ({Sigma}SFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -200 km/s to -300 km/s and on average the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit minimum mass outflow rates > 5-7 Msun/yr and a mass loading factor ({eta} = dMout/dt /SFR) comparable to the star formation rates of the galaxies.
We explore the role of environment in the evolution of galaxies over 0.1<z<0.7 using the final zCOSMOS-bright data set. Using the red fraction of galaxies as a proxy for the quenched population, we find that the fraction of red galaxies increases wit h the environmental overdensity and with the stellar mass, consistent with previous works. As at lower redshift, the red fraction appears to be separable in mass and environment, suggesting the action of two processes: mass and environmental quenching. The parameters describing these appear to be essentially the same at z~0.7 as locally. We explore the relation between red fraction, mass and environment also for the central and satellite galaxies separately, paying close attention to the effects of impurities in the central-satellite classification and using carefully constructed samples matched in stellar mass. There is little evidence for a dependence of the red fraction of centrals on overdensity. Satellites are consistently redder at all overdensities, and the satellite quenching efficiency increases with overdensity at 0.1<z<0.4. This is less marked at higher redshift, but both are nevertheless consistent with the equivalent local measurements. At a given stellar mass, the fraction of galaxies that are satellites also increases with the overdensity. At a given overdensity and mass, the obtained relation between the environmental quenching and the satellite fraction agrees well with the satellite quenching efficiency, demonstrating that the environmental quenching in the overall population is consistent with being entirely produced through the satellite quenching process at least up to z=0.7. However, despite the unprecedented size of our high redshift samples, the associated statistical uncertainties are still significant and our statements should be understood as approximations to physical reality, rather than physically exact formulae.
104 - C. Knobel , S. J. Lilly , K. Kovac 2012
We examine the red fraction of central and satellite galaxies in the large zCOSMOS group catalog out to z ~ 0.8 correcting for both the incompleteness in stellar mass and for the less than perfect purities of the central and satellite samples. We sho w that, at all masses and at all redshifts, the fraction of satellite galaxies that have been quenched, i.e., are red, is systematically higher than that of centrals, as seen locally in the Sloan Digital Sky Survey (SDSS). The satellite quenching efficiency, which is the probability that a satellite is quenched because it is a satellite rather than a central, is, as locally, independent of stellar mass. Furthermore, the average value is about 0.5, which is also very similar to that seen in the SDSS. We also construct the mass functions of blue and red centrals and satellites and show that these broadly follow the predictions of the Peng et al. analysis of the SDSS groups. Together, these results indicate that the effect of the group environment in quenching satellite galaxies was very similar when the universe was about a half its present age, as it is today.
We identify 42 candidate groups lying between 1.8<z<3.0 from a sample of 3502 galaxies with spectroscopic redshifts in the zCOSMOS-deep redshift survey within the same redshift interval. These systems contain three to five spectroscopic galaxies that lie within 500kpc in projected distance (in physical space) and within 700km/s in velocity. Based on extensive analysis of mock catalogues that have been generated from the Millennium simulation, we examine the likely nature of these systems at the time of observation, and what they will evolve into down to the present epoch. Although few of the member galaxies are likely to reside in the same halo at the epoch we observe them, 50% of the systems will eventually bring them all into the same halo, and almost all (93%) will have at least part of the member galaxies in the same halo by the present epoch. Most of the candidate groups can therefore be described as proto-groups. An estimate of the overdensities is also consistent with the idea that these systems are being seen at the start of the assembly process. We also examine present-day haloes and ask whether their progenitors would have been seen amongst our candidate groups. For present-day haloes between 10^14-10^15Msun/h, 35% should have appeared amongst our candidate groups, and this would have risen to 70% if our survey had been fully-sampled, so we can conclude that our sample can be taken as representative of a large fraction of such systems. There is a clear excess of massive galaxies above 10^10Msun around the locations of the candidate groups in a large independent COSMOS photo-z sample, but we see no evidence in this latter data for any colour differentiation with respect to the field. This is however consistent with the idea that such differentiation arises in satellite galaxies, as indicated at z<1, if the candidate groups are indeed only starting to be assembled.
We present a group-galaxy cross-correlation analysis using a group catalog produced from the 16,500 spectra from the optical zCOSMOS galaxy survey. Our aim is to perform a consistency test in the redshift range 0.2 < z < 0.8 between the clustering st rength of the groups and mass estimates that are based on the richness of the groups. We measure the linear bias of the groups by means of a group-galaxy cross-correlation analysis and convert it into mass using the bias-mass relation for a given cosmology, checking the systematic errors using realistic group and galaxy mock catalogs. The measured bias for the zCOSMOS groups increases with group richness as expected by the theory of cosmic structure formation and yields masses that are reasonably consistent with the masses estimated from the richness directly, considering the scatter that is obtained from the 24 mock catalogs. An exception are the richest groups at high redshift (estimated to be more massive than 10^13.5 M_sun), for which the measured bias is significantly larger than for any of the 24 mock catalogs (corresponding to a 3-sigma effect), which is attributed to the extremely large structure that is present in the COSMOS field at z ~ 0.7. Our results are in general agreement with previous studies that reported unusually strong clustering in the COSMOS field.
We present an optical group catalog between 0.1 < z < 1 based on 16,500 high-quality spectroscopic redshifts in the completed zCOSMOS-bright survey. The catalog published herein contains 1498 groups in total and 192 groups with more than five observe d members. The catalog includes both group properties and the identification of the member galaxies. Based on mock catalogs, the completeness and purity of groups with three and more members should be both about 83% with respect to all groups that should have been detectable within the survey, and more than 75% of the groups should exhibit a one-to-one correspondence to the real groups. Particularly at high redshift, there are apparently more galaxies in groups in the COSMOS field than expected from mock catalogs. We detect clear evidence for the growth of cosmic structure over the last seven billion years in the sense that the fraction of galaxies that are found in groups (in volume-limited samples) increases significantly with cosmic time. In the second part of the paper, we develop a method for associating galaxies that only have photo-z to our spectroscopically identified groups. We show that this leads to improved definition of group centers, improved identification of the most massive galaxies in the groups, and improved identification of central and satellite galaxies, where we define the former to be galaxies at the minimum of the gravitational potential wells. Subsamples of centrals and satellites in the groups can be defined with purities up to 80%, while a straight binary classification of all group and non-group galaxies into centrals and satellites achieves purities of 85% and 75%, respectively, for the spectroscopic sample.
The zCOSMOS-bright 10k spectroscopic sample reveals a strong environmental dependence of close kinematic galaxy pair fractions in the redshift range 0.2 < z < 1. The fraction of close pairs is three times higher in the top density quartile than in th e lowest one. This environmental variation in pair fractions will translate into merger fractions since merger timescales are shown, based on Millennium simulation catalogs, to be largely independent of environment. While galactic properties of close kinematic pairs (morphologies and star formation rates) may seem to be non-representative of an underlying galaxy population, they can be explained by taking into account well-known effects of environment, and changes caused by interactions. The latter is responsible for an increase of irregular galaxies in pairs by a factor of 50-75%, with a disproportionate increase in the number of irregular-irregular pairs (4-8 times), due to disturbance of about 15% of the disk galaxies in pairs. Another sign of interaction is an observed boost in specific star formation rate (factor 2-4) for the closest pairs. While significant for paired galaxies, this triggered star-formation due to interactions represents only about 5% of the integrated star-formation activity in our volume-limited sample. Although majority of close kinematic pairs are in dense environments, the effects of interactions appear to be strongest in the lower density environments. This may introduce strong biases into observational studies of mergers, especially those based on morphological criteria. Relative excess of post-starburst galaxies observed in paired galaxies (factor sim2) as well as excess of AGNs (factor of over 2), linked with environmental dependence of the pair fractions could indicate that early phases of interactions and merging are plausible candidates for environmental quenching, observed in the global galaxy populations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا