ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the complete set of leading-color two-loop contributions required to obtain next-to-next-to-leading-order (NNLO) QCD corrections to three-jet production at hadron colliders. We obtain analytic expressions for a generating set of finite rem ainders, valid in the physical region for three-jet production. The analytic continuation of the known Euclidean-region results is determined from a small set of numerical evaluations of the amplitudes. We obtain analytic expressions that are suitable for phenomenological applications and we present a C++ library for their efficient and stable numerical evaluation.
106 - S. Abreu , B. Page , E. Pascual 2020
We compute the two-loop helicity amplitudes for the production of three photons at hadron colliders in QCD at leading-color. Using the two-loop numerical unitarity method coupled with analytic reconstruction techniques, we obtain the decomposition of the two-loop amplitudes in terms of master integrals in analytic form. These expressions are valid to all orders in the dimensional regulator. We use them to compute the two-loop finite remainders, which are given in a form that can be efficiently evaluated across the whole physical phase space. We further package these results in a public code which assembles the helicity-summed squared two-loop remainders, whose numerical stability across phase-space is demonstrated. This is the first time that a five-point two-loop process is publicly available for immediate phenomenological applications.
We present the first public version of Caravel, a C++17 framework for the computation of multi-loop scattering amplitudes in quantum field theory, based on the numerical unitarity method. Caravel is composed of modules for the $D$-dimensional decompo sition of integrands of scattering amplitudes into master and surface terms, the computation of tree-level amplitudes in floating point or finite-field arithmetic, the numerical computation of one- and two-loop amplitudes in QCD and Einstein gravity, and functional reconstruction tools. We provide programs that showcase Caravels main functionalities and allow to compute selected one- and two-loop amplitudes.
131 - S. Abreu , H. Ita , F. Moriello 2020
We present the computation of a full set of planar five-point two-loop master integrals with one external mass. These integrals are an important ingredient for two-loop scattering amplitudes for two-jet-associated W-boson production at leading color in QCD. We provide a set of pure integrals together with differential equations in canonical form. We obtain analytic differential equations efficiently from numerical samples over finite fields, fitting an ansatz built from symbol letters. The symbol alphabet itself is constructed from cut differential equations and we find that it can be written in a remarkably compact form. We comment on the analytic properties of the integrals and confirm the extended Steinmann relations, which govern the double discontinuities of Feynman integrals, to all orders in $epsilon$. We solve the differential equations in terms of generalized power series on single-parameter contours in the space of Mandelstam invariants. This form of the solution trivializes the analytic continuation and the integrals can be evaluated in all kinematic regions with arbitrary numerical precision.
We present the analytic form of the two-loop four-graviton scattering amplitudes in Einstein gravity. To remove ultraviolet divergences we include counterterms quadratic and cubic in the Riemann curvature tensor. The two-loop numerical unitarity appr oach is used to deal with the challenging momentum dependence of the interactions. We exploit the algebraic properties of the integrand of the amplitude in order to map it to a minimal basis of Feynman integrals. Analytic expressions are obtained from numerical evaluations of the amplitude. Finally, we show that four-graviton scattering observables depend on fewer couplings than naively expected.
We present the analytic form of all leading-color two-loop five-parton helicity amplitudes in QCD. The results are analytically reconstructed from exact numerical evaluations over finite fields. Combining a judicious choice of variables with a new ap proach to the treatment of particle states in $D$ dimensions for the numerical evaluation of amplitudes, we obtain the analytic expressions with a modest computational effort. Their systematic simplification using multivariate partial-fraction decomposition leads to a particularly compact form. Our results provide all two-loop amplitudes required for the calculation of next-to-next-to-leading order QCD corrections to the production of three jets at hadron colliders in the leading-color approximation.
We present the analytic form of the two-loop five-gluon scattering amplitudes in QCD for a complete set of independent helicity configurations of external gluons. These include the first analytic results for five-point two-loop amplitudes relevant fo r the computation of next-to-next-to-leading-order QCD corrections at hadron colliders. The results were obtained by reconstructing analytic expressions from numerical evaluations. The complexity of the computation is reduced by exploiting physical and analytical properties of the amplitudes, employing a minimal basis of so-called pentagon functions that have recently been classified.
We compute a complete set of independent leading-color two-loop five-parton amplitudes in QCD. These constitute a fundamental ingredient for the next-to-next-to-leading order QCD corrections to three-jet production at hadron colliders. We show how to consistently consider helicity amplitudes with external fermions in dimensional regularization, allowing the application of a numerical variant of the unitarity approach. Amplitudes are computed by exploiting a decomposition of the integrand into master and surface terms that is independent of the parton type. Master integral coefficients are numerically computed in either finite-field or floating-point arithmetic and combined with known analytic master integrals. We recompute two-loop leading-color four-parton amplitudes as a check of our implementation. Results are presented for all independent four- and five-parton processes including contributions with massless closed fermion loops.
104 - S. Abreu , S. V. Akkelin , J. Alam 2007
This writeup is a compilation of the predictions for the forthcoming Heavy Ion Program at the Large Hadron Collider, as presented at the CERN Theory Institute Heavy Ion Collisions at the LHC - Last Call for Predictions, held from May 14th to June 10th 2007.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا