ﻻ يوجد ملخص باللغة العربية
We present the first public version of Caravel, a C++17 framework for the computation of multi-loop scattering amplitudes in quantum field theory, based on the numerical unitarity method. Caravel is composed of modules for the $D$-dimensional decomposition of integrands of scattering amplitudes into master and surface terms, the computation of tree-level amplitudes in floating point or finite-field arithmetic, the numerical computation of one- and two-loop amplitudes in QCD and Einstein gravity, and functional reconstruction tools. We provide programs that showcase Caravels main functionalities and allow to compute selected one- and two-loop amplitudes.
We compute a complete set of independent leading-color two-loop five-parton amplitudes in QCD. These constitute a fundamental ingredient for the next-to-next-to-leading order QCD corrections to three-jet production at hadron colliders. We show how to
Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement th
We explain how one-loop amplitudes with massive fermions can be computed using only on-shell information. We first use the spinor-helicity formalism in six dimensions to perform generalised unitarity cuts in $d$ dimensions. We then show that divergen
We show that one-loop amplitudes in massless gauge theories can be determined from single cuts. By cutting a single propagator and putting it on-shell, the integrand of an n-point one-loop integral is transformed into an (n+2)-particle tree level amp
A framework to represent and compute two-loop $N$-point Feynman diagrams as double-integrals is discussed. The integrands are generalised one-loop type multi-point functions multiplied by simple weighting factors. The final integrations over these tw