ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Loop Integrals for Planar Five-Point One-Mass Processes

132   0   0.0 ( 0 )
 نشر من قبل Samuel Abreu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the computation of a full set of planar five-point two-loop master integrals with one external mass. These integrals are an important ingredient for two-loop scattering amplitudes for two-jet-associated W-boson production at leading color in QCD. We provide a set of pure integrals together with differential equations in canonical form. We obtain analytic differential equations efficiently from numerical samples over finite fields, fitting an ansatz built from symbol letters. The symbol alphabet itself is constructed from cut differential equations and we find that it can be written in a remarkably compact form. We comment on the analytic properties of the integrals and confirm the extended Steinmann relations, which govern the double discontinuities of Feynman integrals, to all orders in $epsilon$. We solve the differential equations in terms of generalized power series on single-parameter contours in the space of Mandelstam invariants. This form of the solution trivializes the analytic continuation and the integrals can be evaluated in all kinematic regions with arbitrary numerical precision.



قيم البحث

اقرأ أيضاً

We present analytic expressions in terms of polylogarithmic functions for all three families of planar two-loop five-point Master Integrals with one off-shell leg. The calculation is based on the Simplified Differential Equations approach. The result s are relevant to the study of many $2to 3$ scattering processes of interest at the LHC, especially for the leading-color $W+2$ jets production.
64 - A.Denner , S.Dittmaier 2006
We briefly sketch the methods for a numerically stable evaluation of tensor one-loop integrals that have been used in the calculation of the complete electroweak one-loop corrections to $PepPemto4 $fermions. In particular, the improvement of the new methods over the conventional Passarino--Veltman reduction is illustrated for some 4-point integrals in the delicate limits of small Gram (and other kinematical) determinants.
We compute a complete set of independent leading-color two-loop five-parton amplitudes in QCD. These constitute a fundamental ingredient for the next-to-next-to-leading order QCD corrections to three-jet production at hadron colliders. We show how to consistently consider helicity amplitudes with external fermions in dimensional regularization, allowing the application of a numerical variant of the unitarity approach. Amplitudes are computed by exploiting a decomposition of the integrand into master and surface terms that is independent of the parton type. Master integral coefficients are numerically computed in either finite-field or floating-point arithmetic and combined with known analytic master integrals. We recompute two-loop leading-color four-parton amplitudes as a check of our implementation. Results are presented for all independent four- and five-parton processes including contributions with massless closed fermion loops.
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul ts for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
We present the analytic computation of a family of non-planar master integrals which contribute to the two-loop scattering amplitudes for Higgs plus one jet production, with full heavy-quark mass dependence. These are relevant for the NNLO correction s to inclusive Higgs production and for the NLO corrections to Higgs production in association with a jet, in QCD. The computation of the integrals is performed with the method of differential equations. We provide a choice of basis for the polylogarithmic sectors, that puts the system of differential equations in canonical form. Solutions up to weight 2 are provided in terms of logarithms and dilogarithms, and 1-fold integral solutions are provided at weight 3 and 4. There are two elliptic sectors in the family, which are computed by solving their associated set of differential equations in terms of generalized power series. The resulting series may be truncated to obtain numerical results with high precision. The series solution renders the analytic continuation to the physical region straightforward. Moreover, we show how the series expansion method can be used to obtain accurate numerical results for all the master integrals of the family in all kinematic regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا