ترغب بنشر مسار تعليمي؟ اضغط هنا

121 - Rod Gow , Gary McGuire 2021
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the aut omorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.
77 - Rod Gow , John Murray 2020
We prove Clifford theoretic results on the representations of finite groups which only hold in characteristic $2$. Let $G$ be a finite group, let $N$ be a normal subgroup of $G$ and let $varphi$ be an irreducible $2$-Brauer character of $N$ which i s self-dual. We prove that there is a unique self-dual irreducible Brauer character $theta$ of $G$ such that $varphi$ occurs with odd multiplicity in the restriction of $theta$ to $N$. Moreover this multiplicity is $1$. Conversely if $theta$ is an irreducible $2$-Brauer character of $G$ which is self-dual but not of quadratic type, the restriction of $theta$ to $N$ is a sum of distinct self-dual irreducible Brauer character of $N$, none of which have quadratic type. Let $b$ be a real $2$-block of $N$. We show that there is a unique real $2$-block of $G$ covering $b$ which is weakly regular.
109 - Rod Gow , John Murray 2018
Let $P$ be a principal indecomposable module of a finite group $G$ in characteristic $2$ and let $varphi$ be the Brauer character of the corresponding simple $G$-module. We show that $P$ affords a non-degenerate $G$-invariant quadratic form if and on ly if there are involutions $s,tin G$ such that $st$ has odd order and $varphi(st)/2$ is not an algebraic integer. We then show that the number of isomorphism classes of quadratic principal indecomposable $G$-modules is equal to the number of strongly real conjugacy classes of odd order elements of $G$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا