ﻻ يوجد ملخص باللغة العربية
We prove Clifford theoretic results on the representations of finite groups which only hold in characteristic $2$. Let $G$ be a finite group, let $N$ be a normal subgroup of $G$ and let $varphi$ be an irreducible $2$-Brauer character of $N$ which is self-dual. We prove that there is a unique self-dual irreducible Brauer character $theta$ of $G$ such that $varphi$ occurs with odd multiplicity in the restriction of $theta$ to $N$. Moreover this multiplicity is $1$. Conversely if $theta$ is an irreducible $2$-Brauer character of $G$ which is self-dual but not of quadratic type, the restriction of $theta$ to $N$ is a sum of distinct self-dual irreducible Brauer character of $N$, none of which have quadratic type. Let $b$ be a real $2$-block of $N$. We show that there is a unique real $2$-block of $G$ covering $b$ which is weakly regular.
Let $k$ be an algebraically closed field of characteristic $p>0$ and let $C/k$ be a smooth connected affine curve. Denote by $pi_1(C)$ its algebraic fundamental group. The goal of this paper is to characterize a certain subset of closed normal subgro
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under
We show that relative Property (T) for the abelianization of a nilpotent normal subgroup implies relative Property (T) for the subgroup itself. This and other results are a consequence of a theorem of independent interest, which states that if $H$ is
We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the