ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-dual modules in characteristic two and normal subgroups

78   0   0.0 ( 0 )
 نشر من قبل John Murray
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove Clifford theoretic results on the representations of finite groups which only hold in characteristic $2$. Let $G$ be a finite group, let $N$ be a normal subgroup of $G$ and let $varphi$ be an irreducible $2$-Brauer character of $N$ which is self-dual. We prove that there is a unique self-dual irreducible Brauer character $theta$ of $G$ such that $varphi$ occurs with odd multiplicity in the restriction of $theta$ to $N$. Moreover this multiplicity is $1$. Conversely if $theta$ is an irreducible $2$-Brauer character of $G$ which is self-dual but not of quadratic type, the restriction of $theta$ to $N$ is a sum of distinct self-dual irreducible Brauer character of $N$, none of which have quadratic type. Let $b$ be a real $2$-block of $N$. We show that there is a unique real $2$-block of $G$ covering $b$ which is weakly regular.

قيم البحث

اقرأ أيضاً

Let $k$ be an algebraically closed field of characteristic $p>0$ and let $C/k$ be a smooth connected affine curve. Denote by $pi_1(C)$ its algebraic fundamental group. The goal of this paper is to characterize a certain subset of closed normal subgro ups $N$ of $pi_1(C)$. In Normal subgroups of fundamental groups of affine curves in positive characteristic we proved the same result under the additional hypothesis that $k$ had countable cardinality.
Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under the hypothesis that the quotient $pi_1(C)/N$ admits an infinitely generated Sylow $p$-subgroup, we prove that $N$ is indeed isomorphic to a normal (resp. characteristic) subgroup of a free profinite group of countable cardinality. As a consequence, every proper open subgroup of $N$ is a free profinite group of countable cardinality.
We show that relative Property (T) for the abelianization of a nilpotent normal subgroup implies relative Property (T) for the subgroup itself. This and other results are a consequence of a theorem of independent interest, which states that if $H$ is a closed subgroup of a locally compact group $G$, and $A$ is a closed subgroup of the center of $H$, such that $A$ is normal in $G$, and $(G/A, H/A)$ has relative Property (T), then $(G, H^{(1)})$ has relative Property (T), where $H^{(1)}$ is the closure of the commutator subgroup of $H$. In fact, the assumption that $A$ is in the center of $H$ can be replaced with the weaker assumption that $A$ is abelian and every $H$-invariant finite measure on the unitary dual of $A$ is supported on the set of fixed points.
We classify the irreducible representations of smooth, connected affine algebraic groups over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating the dimension for pseudo-split pseudo-reductive groups to the split reductive case and the pseudo-split pseudo-reductive commutative case. Moreover, we give the first results on the latter, including a rather complete description of the rank one case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا