ترغب بنشر مسار تعليمي؟ اضغط هنا

On the realization of subgroups of $PGL(2,F)$, and their automorphism groups, as Galois groups over function fields

122   0   0.0 ( 0 )
 نشر من قبل Gary McGuire
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the automorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.

قيم البحث

اقرأ أيضاً

In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista ble reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that the Galois representation attached to the l-torsion of J(C) is surjective onto the group GSp(2n, l). In particular we realize GSp(6, l) as a Galois group over Q for all primes l in [11, 500000].
176 - Yichao Tian 2006
Let $S$ be the spectrum of a complete discrete valuation ring with fraction field of characteristic 0 and perfect residue field of characteristic $pgeq 3$. Let $G$ be a truncated Barsotti-Tate group of level 1 over $S$. If ``$G$ is not too supersingu lar, a condition that will be explicitly expressed in terms of the valuation of a certain determinant, we prove that we can canonically lift the kernel of the Frobenius endomorphism of its special fibre to a subgroup scheme of $G$, finite and flat over $S$. We call it the canonical subgroup of $G$.
In this article, we show that in each of four standard families of hyperelliptic curves, there is a density-$1$ subset of members with the property that their Jacobians have adelic Galois representation with image as large as possible. This result co nstitutes an explicit application of a general theorem on arbitrary rational families of abelian varieties to the case of families of Jacobians of hyperelliptic curves. Furthermore, we provide explicit examples of hyperelliptic curves of genus $2$ and $3$ over $mathbb Q$ whose Jacobians have such maximal adelic Galois representations.
113 - Amilcar Pacheco 2006
Let $k$ be a field of characteristic $q$, $cac$ a smooth geometrically connected curve defined over $k$ with function field $K:=k(cac)$. Let $A/K$ be a non constant abelian variety defined over $K$ of dimension $d$. We assume that $q=0$ or $>2d+1$. L et $p e q$ be a prime number and $cactocac$ a finite geometrically textsc{Galois} and etale cover defined over $k$ with function field $K:=k(cac)$. Let $(tau,B)$ be the $K/k$-trace of $A/K$. We give an upper bound for the $bbz_p$-corank of the textsc{Selmer} group $text{Sel}_p(Atimes_KK)$, defined in terms of the $p$-descent map. As a consequence, we get an upper bound for the $bbz$-rank of the textsc{Lang-Neron} group $A(K)/tauB(k)$. In the case of a geometric tower of curves whose textsc{Galois} group is isomorphic to $bbz_p$, we give sufficient conditions for the textsc{Lang-Neron} group of $A$ to be uniformly bounded along the tower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا