ترغب بنشر مسار تعليمي؟ اضغط هنا

Most previous contributions to BSDEs, and the related theories of nonlinear expectation and dynamic risk measures, have been in the framework of continuous time diffusions or jump diffusions. Using solutions of BSDEs on spaces related to finite state , continuous time Markov chains, we develop a theory of nonlinear expectations in the spirit of [Dynamically consistent nonlinear evaluations and expectations (2005) Shandong Univ.]. We prove basic properties of these expectations and show their applications to dynamic risk measures on such spaces. In particular, we prove comparison theorems for scalar and vector valued solutions to BSDEs, and discuss arbitrage and risk measures in the scalar case.
By analogy with the theory of Backward Stochastic Differential Equations, we define Backward Stochastic Difference Equations on spaces related to discrete time, finite state processes. This paper considers these processes as constructions in their ow n right, not as approximations to the continuous case. We establish the existence and uniqueness of solutions under weaker assumptions than are needed in the continuous time setting, and also establish a comparison theorem for these solutions. The conditions of this theorem are shown to approximate those required in the continuous time setting. We also explore the relationship between the driver $F$ and the set of solutions; in particular, we determine under what conditions the driver is uniquely determined by the solution. Applications to the theory of nonlinear expectations are explored, including a representation result.
This paper studies the set of $ntimes n$ matrices for which all row and column sums equal zero. By representing these matrices in a lower dimensional space, it is shown that this set is closed under addition and multiplication, and furthermore is iso morphic to the set of arbitrary $(n-1)times (n-1)$ matrices. The Moore-Penrose pseudoinverse corresponds with the true inverse, (when it exists), in this lower dimension and an explicit representation of this pseudoinverse in terms of the lower dimensional space is given. This analysis is then extended to non-square matrices with all row or all column sums equal to zero.
We consider backward stochastic differential equations (BSDEs) related to finite state, continuous time Markov chains. We show that appropriate solutions exist for arbitrary terminal conditions, and are unique up to sets of measure zero. We do not re quire the generating functions to be monotonic, instead using only an appropriate Lipschitz continuity condition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا