ترغب بنشر مسار تعليمي؟ اضغط هنا

The detection of gravitational waves from compact binary coalescence by Advanced LIGO and Advanced Virgo provides an opportunity to study the strong-field, highly-relativistic regime of gravity. Gravitational-wave tests of General Relativity (GR) typ ically assume Gaussian and stationary detector noise, thus do not account for non-Gaussian, transient noise features (glitches). We present the results obtained by performing parameterized gravitational-wave tests on simulated signals from binary-black-hole coalescence overlapped with three classes of frequently occurring instrumental glitches with distinctly different morphologies. We then review and apply three glitch mitigation methods and evaluate their effects on reducing false deviations from GR. By considering 9 cases of glitches overlapping with simulated signals, we show that the short-duration, broadband blip and tomte glitches under consideration introduce false violations of GR, and using an inpainting filter and glitch model subtraction can consistently eliminate such false violations without introducing additional effects.
We present numerical waveforms of gravitational-wave echoes from spinning exotic compact objects (ECOs) that result from binary black hole coalescence. We obtain these echoes by solving the Teukolsky equation for the $psi_4$ associated with gravitati onal waves that propagate toward the horizon of a Kerr spacetime, and process the subsequent reflections of the horizon-going wave by the surface of the ECO, which lies right above the Kerr horizon. The trajectories of the infalling objects are modified from Kerr geodesics, such that the gravitational waves propagating toward future null infinity match those from merging black holes with comparable masses. In this way, the corresponding echoes approximate to those from comparable-mass mergers. For boundary conditions at the ECO surface, we adopt recent work using the membrane paradigm, which relates $psi_0$ associated with the horizon-going wave and $psi_4$ of the wave that leaves the ECO surface. We obtain $psi_0$ of the horizon-going wave from $psi_4$ using the Teukolsky-Starobinsky relation. The echoes we obtain turn out to be significantly weaker than those from previous studies that generate echo waveforms by modeling the ringdown part of binary black hole coalescence waveforms as originating from the past horizon.
We present a null-stream-based Bayesian unmodeled framework to probe generic gravitational-wave polarizations. Generic metric theories allow six gravitational-wave polarization states, but general relativity only permits the existence of two of them namely the tensorial polarizations. The strain signal measured by an interferometer is a linear combination of the polarization modes and such a linear combination depends on the geometry of the detector and the source location. The detector network of Advanced LIGO and Advanced Virgo allows us to measure different linear combinations of the polarization modes and therefore we can constrain the polarization content by analyzing how the polarization modes are linearly combined. We propose the basis formulation to construct a null stream along the polarization basis modes without requiring modeling the basis explicitly. We conduct a mock data study and we show that the framework is capable of probing pure and mixed polarizations in the Advanced LIGO-Advanced Virgo 3-detector network without knowing the sky location of the source from electromagnetic counterparts. We also discuss the effect of the presence of the uncaptured orthogonal polarization component in the framework, and we propose using the plug-in method to test the existence of the orthogonal polarizations.
The detection of gravitational wave signals by Advanced LIGO and Advanced Virgo enables us to probe the polarization content of gravitational waves. In general relativity, only tensor modes are present, while in a variety of alternative theories one can also have vector or scalar modes. Recently test were performed which compared Bayesian evidences for the hypotheses that either purely tensor, purely vector, or purely scalar polarizations were present. Indeed, with only three detectors in a network and allowing for mixtures of tensor polarizations and alternative polarization states, it is not possible to identify precisely which non-standard polarizations might be in the signal and by what amounts. However, we demonstrate that one can still infer whether, in addition to tensor polarizations, alternative polarizations are present in the first place, irrespective of the detailed polarization content. We develop two methods to do this for sources with electromagnetic counterparts, both based on the so-called null stream. Apart from being able to detect mixtures of tensor and alternative polarizations, these have the added advantage that no waveform models are needed, and signals from any kind of transient source with known sky position can be used. Both formalisms allow us to combine information from multiple sources so as to arrive at increasingly more stringent bounds. For now we apply these on the binary neutron star signal GW170817, showing consistency with the tensor-only hypothesis with p-values of 0.315 and 0.790 for the two methods.
In the multi-messenger astronomy era, accurate sky localization and low latency time of gravitational-wave (GW) searches are keys in triggering successful follow-up observations on the electromagnetic counterpart of GW signals. We, in this work, focu s on the latency time and study the feasibility of adopting supervised machine learning (ML) method for ranking candidate GW events. We consider two popular ML methods, random forest and neural networks. We observe that the evaluation time of both methods takes tens of milliseconds for $sim$ 45,000 evaluation samples. We compare the classification efficiency between the two ML methods and a conventional low-latency search method with respect to the true positive rate at given false positive rate. The comparison shows that about 10% improved efficiency can be achieved at lower false positive rate $sim 2 times 10^{-5}$ with both ML methods. We also present that the search sensitivity can be enhanced by about 18% at $sim 10^{-11}$Hz false alarm rate. We conclude that adopting ML methods for ranking candidate GW events is a prospective approach to yield low latency and high efficiency in searches for GW signals from compact binary mergers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا