ترغب بنشر مسار تعليمي؟ اضغط هنا

Generic searches for alternative gravitational wave polarizations with networks of interferometric detectors

133   0   0.0 ( 0 )
 نشر من قبل Peter Tsun Ho Pang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of gravitational wave signals by Advanced LIGO and Advanced Virgo enables us to probe the polarization content of gravitational waves. In general relativity, only tensor modes are present, while in a variety of alternative theories one can also have vector or scalar modes. Recently test were performed which compared Bayesian evidences for the hypotheses that either purely tensor, purely vector, or purely scalar polarizations were present. Indeed, with only three detectors in a network and allowing for mixtures of tensor polarizations and alternative polarization states, it is not possible to identify precisely which non-standard polarizations might be in the signal and by what amounts. However, we demonstrate that one can still infer whether, in addition to tensor polarizations, alternative polarizations are present in the first place, irrespective of the detailed polarization content. We develop two methods to do this for sources with electromagnetic counterparts, both based on the so-called null stream. Apart from being able to detect mixtures of tensor and alternative polarizations, these have the added advantage that no waveform models are needed, and signals from any kind of transient source with known sky position can be used. Both formalisms allow us to combine information from multiple sources so as to arrive at increasingly more stringent bounds. For now we apply these on the binary neutron star signal GW170817, showing consistency with the tensor-only hypothesis with p-values of 0.315 and 0.790 for the two methods.

قيم البحث

اقرأ أيضاً

We present a null-stream-based Bayesian unmodeled framework to probe generic gravitational-wave polarizations. Generic metric theories allow six gravitational-wave polarization states, but general relativity only permits the existence of two of them namely the tensorial polarizations. The strain signal measured by an interferometer is a linear combination of the polarization modes and such a linear combination depends on the geometry of the detector and the source location. The detector network of Advanced LIGO and Advanced Virgo allows us to measure different linear combinations of the polarization modes and therefore we can constrain the polarization content by analyzing how the polarization modes are linearly combined. We propose the basis formulation to construct a null stream along the polarization basis modes without requiring modeling the basis explicitly. We conduct a mock data study and we show that the framework is capable of probing pure and mixed polarizations in the Advanced LIGO-Advanced Virgo 3-detector network without knowing the sky location of the source from electromagnetic counterparts. We also discuss the effect of the presence of the uncaptured orthogonal polarization component in the framework, and we propose using the plug-in method to test the existence of the orthogonal polarizations.
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the an alytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as $1/f^2$, the averaged response function for the longitudinal mode falls off as $1/f$ and the averaged response function for the vector mode falls off as $ln(f)/f^2$.
We study the polarizations of gravitational waves (GWs) in two classes of extended gravity theories. First, we formulate the polarizations in linear massive gravity (MG) with generic mass terms of non-Fierz-Pauli type by identifying all the independe nt variables that obey Klein-Gordon-type equations. The dynamical degrees of freedom (dofs) in the generic MG consist of spin-2 and spin-0 modes, the former breaking down into two tensor (helicity-2), two vector (helicity-1) and one scalar (helicity-0) components, while the latter just corresponding to a scalar. We find convenient ways of decomposing the two scalar modes of each spin into distinct linear combinations of the transverse and longitudinal polarizations with coefficients directly expressed by the mass parameters, thereby serving as a useful tool in measuring the masses of GWs. Then we analyze the linear perturbations of generic higher-curvature gravity (HCG) whose Lagrangian is an arbitrary polynomial of the Riemann tensor. On a flat background, the linear dynamical dofs in this theory are identified as massless spin-2, massive spin-2, and massive spin-0 modes. As its massive part encompasses the identical structure to the generic MG, GWs in the generic HCG provide six massive polarizations on top of the ordinary two massless modes. In parallel to MG, we find convenient representations for the scalar-polarization modes directly connected to the parameters of HCG. In this analysis, we employ two distinct methods; One takes full advantage of the partial equivalence between the generic HCG and MG at the linear level, whereas the other relies upon a gauge-invariant formalism. We confirm that the two results agree. We also discuss methods to determine the theory parameters by GW-polarization measurements. Our method does not require measuring the propagation speeds or the details of the waveforms of the GWs. [Abridged]
Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (sc alar) GW modes and spin-1 (vector) modes, especially with an expected network of Advanced LIGO, Advanced Virgo and KAGRA. For two independent null streams for four non-co-aligned GW detectors, we study a location on the sky, exactly at which the spin-0 modes of GWs vanish in any null stream for the GW detector network, though the strain output at a detector may contain the spin-0 modes. Our numerical calculations show that there exist seventy sky positions that satisfy this condition of killing the spin-0 modes in the null streams. If a GW source with an electromagnetic counterpart is found in one of the seventy sky positions, the spin-1 modes will be testable separately from the spin-0 modes by the null stream method. In addition, we study a superposition of the two null streams to show that any one of the three modes (one combined spin-0 and two spin-1 modes) can be eliminated by suitably adjusting a weighted superposition of the null streams and thereby a set of the remaining polarization modes can be experimentally tested.
Gravitational waves may be one of the few direct observables produced by ultralight bosons, conjectured dark matter candidates that could be the key to several problems in particle theory, high-energy physics and cosmology. These axionlike particles could spontaneously form clouds around astrophysical black holes, leading to potent emission of continuous gravitational waves that could be detected by instruments on the ground and in space. Although this scenario has been thoroughly studied, it has not been yet appreciated that both types of detector may be used in tandem (a practice known as multibanding). In this paper, we show that future gravitational-wave detectors on the ground and in space will be able to work together to detect ultralight bosons with masses $25 lesssim mu/left(10^{-15}, mathrm{eV}right)lesssim 500$. In detecting binary-black-hole inspirals, the LISA space mission will provide crucial information enabling future ground-based detectors, like Cosmic Explorer or Einstein Telescope, to search for signals from boson clouds around the individual black holes in the observed binaries. We lay out the detection strategy and, focusing on scalar bosons, chart the suitable parameter space. We study the impact of ignorance about the systems history, including cloud age and black hole spin. We also consider the tidal resonances that may destroy the boson cloud before its gravitational signal becomes detectable by a ground-based follow-up. Finally, we show how to take all of these factors into account, together with uncertainties in the LISA measurement, to obtain boson mass constraints from the ground-based observation facilitated by LISA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا