ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by experimental observations, Samajdar et al. [Nature Physics 15, 1290 (2019)] have proposed that the insulating Neel state in the parent compounds of the cuprates is proximate to a quantum phase transition to a state in which Neel order co exists with semion topological order. We study the manner in which proximity to this transition can make the phonons chiral, by inducing a significant phonon Hall viscosity. We describe the spinon-phonon coupling in a lattice spinon model coupled to a strain field, and also using a general continuum theory constrained only by symmetry. We find a nonanalytic Hall viscosity across the transition, with a divergent second derivative at zero temperature.
Graphene-based moir{e} systems have attracted considerable interest in recent years as they display a remarkable variety of correlated phenomena. Besides insulating and superconducting phases in the vicinity of integer fillings of the moir{e} unit ce ll, there is growing evidence for electronic nematic order both in twisted bilayer graphene and twisted double-bilayer graphene (tDBG), as signaled by the spontaneous breaking of the threefold rotational symmetry of the moir{e} superlattices. Here, we combine symmetry-based analysis with a microscopic continuum model to investigate the structure of the nematic phase of tDBG and its experimental manifestations. First, we perform a detailed comparison between the theoretically calculated local density of states and recent scanning tunneling microscopy data [arXiv:2009.11645] to resolve the internal structure of the nematic order parameter in terms of the layer, sublattice, spin, and valley degrees of freedom. We find strong evidence that the dominant contribution to the nematic order parameter comes from states at the moir{e} scale rather than at the microscopic scale of the individual graphene layers, which demonstrates the key role played by the moire degrees of freedom and confirms the correlated nature of the nematic phase in tDBG. Secondly, our analysis reveals an unprecedented tunability of the orientation of the nematic director in tDBG by an externally applied electric field, allowing the director to rotate away from high-symmetry crystalline directions. We compute the expected fingerprints of this rotation in both STM and transport experiments, providing feasible ways to probe it. Rooted in the strong sensitivity of the flat bands of tDBG to the displacement field, this effect opens an interesting route to the electrostatic control of electronic nematicity in moir{e} systems.
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex s olid phases with broken lattice symmetries. In addition, we identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays.
Recent theoretical studies have found quantum spin liquid states with spinon Fermi surfaces upon the application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall conductivity across this transition, descri bing how the quantized thermal Hall conductivity of the gapped state changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the honeycomb lattice, and the state with Abelian chiral spin liquid topological order on the triangular lattice.
We consider the thermal Hall effect of fermionic matter coupled to emergent gauge fields in 2+1 dimensions. While the low-temperature thermal Hall conductivity of bulk topological phases can be connected to chiral edge states and a gravitational anom aly, there is no such interpretation at nonzero temperatures above 2+1 dimensional quantum critical points. In the limit of a large number of matter flavors, the leading contribution to the thermal Hall conductivity is that from the fermionic matter. The next-to-leading contribution is from the gauge fluctuations, and this has a sign which is opposite to that of the matter contribution. We illustrate this by computations on a Dirac Chern-Simons theory of the quantum phase transition in a square-lattice antiferromagnet involving the onset of semion topological order. We find similar results for a model of the pseudogap metal with Fermi pockets coupled to an emergent U(1) gauge field. We note connections to recent observations on the hole-doped cuprates: our theory captures the main trends, but the overall magnitude of the effect is smaller than that observed.
We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group al gorithm, we map out the phase diagram and obtain a rich variety of phases featuring complex density wave orderings, upon varying lattice spacing and laser detuning. While some of these phases result from the classical optimization of the van der Waals energy, we also find intrinsically quantum-ordered phases stabilized by quantum fluctuations. These phases are surrounded by novel quantum phase transitions, which we analyze by finite-size scaling numerics and Landau theories. Our work highlights Rydberg quantum simulators in higher dimensions as promising platforms to realize exotic many-body phenomena.
We present a systematic classification and analysis of possible pairing instabilities in graphene-based moire superlattices. Motivated by recent experiments on twisted double-bilayer graphene showing signs of triplet superconductivity, we analyze bot h singlet and triplet pairing separately, and describe how these two channels behave close to the limit where the system is invariant under separate spin rotations in the two valleys, realizing an SU(2)$_+$ $times$ SU(2)$_-$ symmetry. Further, we discuss the conditions under which singlet and triplet can mix via two nearly degenerate transitions, and how the different pairing states behave when an external magnetic field is applied. The consequences of the additional microscopic or emergent approximate symmetries relevant for superconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride are described in detail. We also analyze which of the pairing states can arise in mean-field theory and study the impact of corrections coming from ferromagnetic fluctuations. For instance, we show that, close to the parameters of mean-field theory, a nematic mixed singlet-triplet state emerges. Our study illustrates that graphene superlattices provide a rich platform for exotic superconducting states, and allow for the admixture of singlet and triplet pairing even in the absence of spin-orbit coupling.
Recent experiments on several cuprate compounds have identified an enhanced thermal Hall response in the pseudogap phase. Most strikingly, this enhancement persists even in the undoped system, which challenges our understanding of the insulating pare nt compounds. To explain these surprising observations, we study the quantum phase transition of a square-lattice antiferromagnet from a confining Neel state to a state with coexisting Neel and semion topological order. The transition is driven by an applied magnetic field and involves no change in the symmetry of the state. The critical point is described by a strongly-coupled conformal field theory with an emergent global $SO(3)$ symmetry. The field theory has four different formulations in terms of $SU(2)$ or $U(1)$ gauge theories, which are all related by dualities; we relate all four theories to the lattice degrees of freedom. We show how proximity of the confining Neel state to the critical point can explain the enhanced thermal Hall effect seen in experiment.
Motivated by recent transport measurements in high-$T_c$ cuprate superconductors in a magnetic field, we study the thermal Hall conductivity in materials with topological order, focusing on the contribution from neutral spinons. Specifically, differe nt Schwinger boson mean-field ans{a}tze for the Heisenberg antiferromagnet on the square lattice are analyzed. We allow for both Dzyaloshinskii-Moriya interactions, and additional terms associated with scalar spin chiralities that break time-reversal and reflection symmetries, but preserve their product. It is shown that these scalar spin chiralities, which can either arise spontaneously or are induced by the orbital coupling of the magnetic field, can lead to spinon bands with nontrivial Chern numbers and significantly enhanced thermal Hall conductivity. Associated states with zero-temperature magnetic order, which is thermally fluctuating at any $T>0$, also show a similarly enhanced thermal Hall conductivity.
We describe the quantum phase transition in the $N$-state chiral clock model in spatial dimension $d=1$. With couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality class of recent experimenta l studies of the ordering of pumped Rydberg states in a one-dimensional chain of trapped ultracold alkali atoms. For such couplings and $N=3$, the clock model is expected to have a direct phase transition from a gapped phase with a broken global $mathbb{Z}_N$ symmetry, to a gapped phase with the $mathbb{Z}_N$ symmetry restored. The transition has dynamical critical exponent $z eq 1$, and so cannot be described by a relativistic quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in $d=1$, involving the onset of a single boson condensate in the background of a higher-dimensional $N$-boson condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas transition in an expansion in $2-d$, with $4-N$ chosen to be of order $2-d$. At two-loop order, we find a regime of parameters with a renormalization group fixed point which can describe a direct phase transition. We also present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for $N=3$, finding good evidence for a direct phase transition, and obtain estimates for $z$ and the correlation length exponent $ u$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا