ترغب بنشر مسار تعليمي؟ اضغط هنا

Outside a black hole, perturbation fields die off in time as $1/t^n$. For spherical holes $n=2ell+3$ where $ell$ is the multipole index. In the nonspherical Kerr spacetime there is no coordinate-independent meaning of multipole, and a common sense vi ewpoint is to set $ell$ to the lowest radiatiable index, although theoretical studies have led to very different claims. Numerical results, to date, have been controversial. Here we show that expansion for small Kerr spin parameter $a$ leads to very definite numerical results confirming previous theoretical analyses.
Black hole perturbation theory, or more generally, perturbation theory on a Schwarzschild bockground, has been applied in several contexts, but usually under the simplifying assumption that the ADM momentum vanishes, namely, that the evolution is car ried out and observed in the ``center of momentum frame. In this paper we consider some consequences of the inclusion of a non vanishing ADM momentum in the initial data. We first provide a justification for the validity of the transformation of the initial data to the ``center of momentum frame, and then analyze the effect of this transformation on the gravitational wave amplitude. The most significant result is the possibility of a type of gravitational memory effect that appears to have no simple relation with the well known Christodoulou effect.
We study the collision of two slowly rotating, initially non boosted, black holes in the close limit. A ``punctures modification of the Bowen - York method is used to construct conformally flat initial data appropriate to the problem. We keep only th e lowest nontrivial orders capable of giving rise to radiation of both gravitational energy and angular momentum. We show that even with these simplifications an extension to higher orders of the linear Regge-Wheeler-Zerilli black hole perturbation theory, is required to deal with the evolution equations of the leading contributing multipoles. This extension is derived, together with appropriate extensions of the Regge-Wheeler and Zerilli equations. The data is numerically evolved using these equations, to obtain the asymptotic gravitational wave forms and amplitudes. Expressions for the radiated gravitational energy and angular momentum are derived and used together with the results of the numerical evolution to provide quantitative expressions for the relative contribution of different terms, and their significance is analyzed.
We obtain observational upper bounds on a class of quantum gravity related birefringence effects, by analyzing the presence of linear polarization in the optical and ultraviolet spectrum of some distant sources. In the notation of Gambini and Pullin we find $chi < 10^{-3}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا