ترغب بنشر مسار تعليمي؟ اضغط هنا

A gravitational memory effect in boosted black hole perturbation theory

59   0   0.0 ( 0 )
 نشر من قبل Reinaldo J. Gleiser
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black hole perturbation theory, or more generally, perturbation theory on a Schwarzschild bockground, has been applied in several contexts, but usually under the simplifying assumption that the ADM momentum vanishes, namely, that the evolution is carried out and observed in the ``center of momentum frame. In this paper we consider some consequences of the inclusion of a non vanishing ADM momentum in the initial data. We first provide a justification for the validity of the transformation of the initial data to the ``center of momentum frame, and then analyze the effect of this transformation on the gravitational wave amplitude. The most significant result is the possibility of a type of gravitational memory effect that appears to have no simple relation with the well known Christodoulou effect.



قيم البحث

اقرأ أيضاً

Much of the success of gravitational-wave astronomy rests on perturbation theory. Historically, perturbative analysis of gravitational-wave sources has largely focused on post-Newtonian theory. However, strong-field perturbation theory is essential i n many cases such as the quasinormal ringdown following the merger of a binary system, tidally perturbed compact objects, and extreme-mass-ratio inspirals. In this review, motivated primarily by small-mass-ratio binaries but not limited to them, we provide an overview of essential methods in (i) black hole perturbation theory, (ii) orbital mechanics in Kerr spacetime, and (iii) gravitational self-force theory. Our treatment of black hole perturbation theory covers most common methods, including the Teukolsky and Regge-Wheeler-Zerilli equations, methods of metric reconstruction, and Lorenz-gauge formulations, presenting them in a new consistent and self-contained form. Our treatment of orbital mechanics covers quasi-Keplerian and action-angle descriptions of bound geodesics and accelerated orbits, osculating geodesics, near-identity averaging transformations, multiscale expansions, and orbital resonances. Our summary of self-force theorys foundations is brief, covering the main ideas and results of matched asymptotic expansions, local expansion methods, puncture schemes, and point particle descriptions. We conclude by combining the above methods in a multiscale expansion of the perturbative Einstein equations, leading to adiabatic and post-adiabatic evolution schemes. Our presentation is intended primarily as a reference for practitioners but includes a variety of new results. In particular, we present the first complete post-adiabatic waveform-generation framework for generic (nonresonant) orbits in Kerr.
The memory effect at null infinity, $mathcal{I}^+$, can be defined in terms of the permanent relative displacement of test particles (at leading order in $1/r$) resulting from the passage of a burst of gravitational radiation. In $D=4$ spacetime dime nsions, the memory effect can be characterized by the supertranslation relating the good cuts of $mathcal{I}^+$ in the stationary eras at early and late retarded times. It also can be characterized in terms of charges and fluxes associated with supertranslations. Black hole event horizons are in many ways analogous to $mathcal{I}^+$. We consider here analogous definitions of memory for a black hole, assuming that the black hole is approximately stationary at early and late advanced times, so that its event horizon is described by a Killing horizon (assumed nonextremal) at early and late times. We give prescriptions for defining preferred foliations of nonextremal Killing horizons. We give a definition of the memory tensor for a black hole in terms of the permanent relative displacement of the null geodesic generators of the event horizon between the early and late time stationary eras. We show that preferred foliations of the event horizon in the early and late time eras are related by a Chandrasekaran-Flanagan-Prabhu (CFP) supertranslation. However, we find that the memory tensor for a black hole horizon does not appear to be related to the CFP symmetries or their charges and fluxes in a manner similar to that occurring at $mathcal{I}^+$.
In a recent paper we have analyzed the Spinor Theory of Gravity (STG) which is based on the intimate relation between Fermi (weak) interaction and gravity. We presented the hypothesis that the effect of matter upon the metric that represents gravitat ional interaction in General Relativity is an effective one. This lead us to consider gravitation to be the result of the interaction of two neutral spinorial fields (G-neutrinos) $Psi_g$ and $Omega_g$ with all kinds of matter and energy through the generation of such effective metric. In other words, the universal metric that represents gravitational interaction in the framework of General Relativity is constructed with the weak currents associated to $Psi_g$ and $Omega_g$. In the first paper we have shown that when only one spinor exists, the effective metric of a static and spherically symmetric configuration is identical to the Schwarzschild geometry of GR. In the present paper we go one step further and consider the case in which the field $Psi_g$ has a self-interaction. The solution of a static and spherically symmetric configuration is distinct from the previous one. This new solution presents another horizon that we compare with the case of Schwarzschild.
97 - G.G.L. Nashed , S. Nojiri 2020
Recent observation shows that general relativity (GR) is not valid in the strong regime. $mathit{f(R)}$ gravity where $mathit{R}$ is the Ricci scalar, is regarded to be one of good candidates able to cure the anomalies appeared in the conventional ge neral relativity. In this realm, we apply the equation of motions of $mathit{f(R)}$ gravity to a spherically symmetric spacetime with two unknown functions and derive original black hole (BH) solutions without any constrains on the Ricci scalar as well as on the form of $mathit{f(R)}$ gravity. Those solutions depend on a convolution function and are deviating from the Schwarzschild solution of the Einstein GR. These solutions are characterized by the gravitational mass of the system and the convolution function that in the asymptotic form gives extra terms that are responsible to make such BHs different from GR. Also, we show that these extra terms make the singularities of the invariants much weaker than those of the GR BH. We analyze such BHs using the trend of thermodynamics and show their consistency with the well known quantities in thermodynamics like the Hawking radiation, entropy and quasi-local energy. We also show that our BH solutions satisfy the first law of thermodynamics. Moreover, we study the stability analysis using the odd-type mode and shows that all the derived BHs are stable and have radial speed equal to one. Finally, using the geodesic deviations we derive the stability conditions of these BHs.
Binary black hole interactions provide potentially the strongest source of gravitational radiation for detectors currently under development. We present some results from the Binary Black Hole Grand Challenge Alliance three- dimensional Cauchy evolut ion module. These constitute essential steps towards modeling such interactions and predicting gravitational radiation waveforms. We report on single black hole evolutions and the first successful demonstration of a black hole moving freely through a three-dimensional computational grid via a Cauchy evolution: a hole moving ~6M at 0.1c during a total evolution of duration ~60M.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا